Lesson 2.6 Applying the Trigonometric Ratios

A

3. a) In right $\triangle \mathrm{ABC}$, the lengths of AC and BC are given.

AC is the hypotenuse and BC is the side opposite $\angle \mathrm{A}$.
So, I would use the sine ratio.
b) In right $\triangle \mathrm{DEF}$, the lengths of DE and EF are given.

DE is the side adjacent to $\angle \mathrm{D}$ and EF is the side opposite $\angle \mathrm{D}$.
So, I would use the tangent ratio.
c) In right $\triangle \mathrm{GHJ}$, the lengths of GH and GJ are given.

GJ is the hypotenuse and GH is the side adjacent to $\angle \mathrm{G}$.
So, I would use the cosine ratio.
d) In right $\triangle X Y Z$, the lengths of $X Z$ and $Y Z$ are given.

YZ is the side adjacent to $\angle \mathrm{Y}$ and XZ is the side opposite $\angle \mathrm{Y}$.
So, I would use the tangent ratio.
4. a) In right $\triangle \mathrm{KMN}$, the length of KM is given and I need to determine the length of KN .

KM is the hypotenuse and KN is the side adjacent to $\angle \mathrm{K}$.
So, I will use the cosine ratio.

$$
\begin{aligned}
\cos \mathrm{K} & =\frac{\text { adjacent }}{\text { hypotenuse }} \\
\cos \mathrm{K} & =\frac{\mathrm{KN}}{\mathrm{KM}} \\
\cos 37^{\circ} & =\frac{m}{5.8} \quad \text { Solve for } m . \\
5.8 \cos 37^{\circ} & =\frac{m(5.8)}{5.8} \\
5.8 \cos 37^{\circ} & =m \\
m & =4.6320 \ldots
\end{aligned}
$$

KN is approximately 4.6 cm long.
b) In right $\triangle P Q R$, the length of $Q R$ is given and I need to determine the length of $P Q$.

QR is the side adjacent to $\angle \mathrm{R}$ and PQ is the side opposite $\angle \mathrm{R}$.
So, I will use the tangent ratio.

$$
\begin{aligned}
\tan \mathrm{R} & =\frac{\text { opposite }}{\text { adjacent }} \\
\tan \mathrm{R} & =\frac{\mathrm{PQ}}{\mathrm{QR}} \\
\tan 52^{\circ} & =\frac{r}{3.7} \quad \text { Solve for } r . \\
3.7 \times \tan 52^{\circ} & =\frac{r}{3.7} \times 3.7 \\
3.7 \tan 52^{\circ} & =r \\
r & =4.7357 \ldots
\end{aligned}
$$

PQ is approximately 4.7 cm long.
c) In right $\triangle \mathrm{AYZ}$, the length of YZ is given and I need to determine the length of $\mathrm{A} Y$. $A Y$ is the hypotenuse and $Y Z$ is the side opposite $\angle \mathrm{A}$.
So, I will use the sine ratio.

$$
\begin{aligned}
\sin \mathrm{A} & =\frac{\text { opposite }}{\text { hypotenuse }} \\
\sin \mathrm{A} & =\frac{\mathrm{YZ}}{\mathrm{AY}} \\
\sin 62^{\circ} & =\frac{10.4}{z} \\
z \sin 62^{\circ} & =\frac{10.4 z}{z} \\
z \sin 62^{\circ} & =10.4 \\
\frac{z \sin 62^{\circ}}{\sin 62^{\circ}} & =\frac{10.4}{\sin 62^{\circ}} \\
z & =\frac{10.4}{\sin 62^{\circ}} \\
z & =11.7787 \ldots
\end{aligned}
$$

AY is approximately 11.8 cm long.
d) In right $\triangle B C D$, the length of $C D$ is given and I need to determine the length of $B D$.

BD is the hypotenuse and CD is the side adjacent to $\angle \mathrm{D}$.
So, I will use the cosine ratio.

$$
\begin{aligned}
\cos \mathrm{D} & =\frac{\text { adjacent }}{\text { hypotenuse }} \\
\cos \mathrm{D} & =\frac{\mathrm{CD}}{\mathrm{BD}} \\
\cos 55^{\circ} & =\frac{8.3}{c} \quad \text { Solve for } c . \\
c \cos 55^{\circ} & =\frac{8.3 c}{c} \\
c \cos 55^{\circ} & =8.3 \\
\frac{c \cos 55^{\circ}}{\cos 55^{\circ}} & =\frac{8.3}{\cos 55^{\circ}} \\
c & =\frac{8.3}{\cos 55^{\circ}} \\
c & =14.4706 \ldots
\end{aligned}
$$

BD is approximately 14.5 cm long.
5. a) In right $\triangle E F G$, the lengths of the legs, $E F$ and $F G$, are given.

So, I would use the Pythagorean Theorem to determine the length of the hypotenuse, EG.
b) In right $\triangle H J K$, the length of HK and the measure of $\angle \mathrm{J}$ are given.

HK is the side opposite $\angle \mathrm{J}$, and HJ is the hypotenuse.
So, I would use the sine ratio to determine the length of HJ.
c) In right $\triangle \mathrm{MNP}$, the lengths of one leg, MN , and the hypotenuse, MP, are given. So, I would use the Pythagorean Theorem to determine the length of the other leg, PN.
d) In right $\triangle \mathrm{QRS}$, the lengths of the legs, RS and QS , are given.

So, I would use the Pythagorean Theorem to determine the length of the hypotenuse, QR.
7. Sketch and label a diagram to represent the information in the problem.

AC is the length of the ramp.
$A B$ is the horizontal distance the ramp will take up.
$B C$ is the maximum height of the ramp.
$\angle \mathrm{A}$ is the angle of elevation of the ramp.
a) In right $\triangle \mathrm{ABC}, \mathrm{AC}$ is the hypotenuse and BC is the side opposite $\angle \mathrm{A}$.

$$
\begin{aligned}
\sin \mathrm{A} & =\frac{\text { opposite }}{\text { hypotenuse }} \\
\sin \mathrm{A} & =\frac{\mathrm{BC}}{\mathrm{AC}} \\
\sin 4^{\circ} & =\frac{80}{\mathrm{AC}} \quad \text { Solve for } \mathrm{AC} . \\
\mathrm{AC} \sin 4^{\circ} & =80 \\
\mathrm{AC} & =\frac{80}{\sin 4^{\circ}} \\
\mathrm{AC} & =1146.8469 \ldots
\end{aligned}
$$

The length of the ramp is approximately 1147 cm .
b) In right $\triangle \mathrm{ABC}, \mathrm{AC}$ is the hypotenuse and BC and AB are the legs.

Use the Pythagorean Theorem.

$$
\begin{aligned}
\mathrm{AC}^{2} & =\mathrm{AB}^{2}+\mathrm{BC}^{2} \quad \text { Solve for the unknown. } \\
\mathrm{AB}^{2} & =\mathrm{AC}^{2}-\mathrm{BC}^{2} \\
\mathrm{AB}^{2} & =(1146.8469 \ldots)^{2}-80^{2} \\
& =1308857.954 \ldots \\
\mathrm{AB} & =\sqrt{1308857.954 \ldots} \\
& =1144.0533 \ldots
\end{aligned}
$$

The ramp will take up a horizontal distance of approximately 1144 cm .
9. Sketch and label a diagram to represent the information in the problem.
$58 \mathrm{~km} \underbrace{(25 \mathrm{~km}}_{3}$
BP is the distance from the base to the sick person.
PH is the distance from the sick person to the hospital.
BH is the distance from the base to the hospital.
$\angle \mathrm{H}$ is the angle between the path the helicopter took due north and the path it will take to return directly to its base.
a) In right $\triangle \mathrm{BHP}, \mathrm{BH}$ is the hypotenuse and BP and PH are the legs.

Use the Pythagorean Theorem.

$$
\begin{aligned}
\mathrm{BH}^{2} & =\mathrm{BP}^{2}+\mathrm{PH}^{2} \\
\mathrm{BH}^{2} & =35^{2}+58^{2} \\
& =4589 \\
\mathrm{BH} & =\sqrt{4589} \\
& =67.7421 \ldots
\end{aligned}
$$

The distance between the hospital and the base is approximately 68 km .
b) In right $\triangle \mathrm{BHP}, \mathrm{BP}$ is the side opposite $\angle \mathrm{H}$ and PH is the side adjacent to $\angle \mathrm{H}$.

$$
\begin{aligned}
\tan \mathrm{H} & =\frac{\text { opposite }}{\text { adjacent }} \\
\tan \mathrm{H} & =\frac{\mathrm{BP}}{\mathrm{PH}} \\
\tan \mathrm{H} & =\frac{35}{58} \\
\angle \mathrm{H} & =31.1088 \ldots
\end{aligned}
$$

The angle between the path the helicopter took due north and the path it will take to return directly to its base is approximately 31°.

