5. Use a calculator.
a) $\sin 57^{\circ} \doteq 0.84$ $\cos 57^{\circ} \doteq 0.54$
b) $\sin 5^{\circ} \doteq 0.09$ $\cos 5^{\circ} \doteq 1.00$
c) $\sin 19^{\circ} \doteq 0.33$ $\cos 19^{\circ} \doteq 0.95$
d) $\sin 81^{\circ} \doteq 0.99$ $\cos 81^{\circ} \doteq 0.16$
6. Use a calculator.
a) $\sin \mathrm{X}=0.25$

$$
\begin{aligned}
\angle \mathrm{X} & =\sin ^{-1}(0.25) \\
& =14^{\circ}
\end{aligned}
$$

b) $\quad \cos \mathrm{X}=0.64$

$$
\begin{aligned}
\angle \mathrm{X} & =\cos ^{-1}(0.64) \\
& \doteq 50^{\circ}
\end{aligned}
$$

c) $\quad \sin X=\frac{6}{11}$

$$
\begin{aligned}
\angle X & =\sin ^{-1}\left(\frac{6}{11}\right) \\
& =33^{\circ}
\end{aligned}
$$

d) $\quad \cos X=\frac{7}{9}$

$$
\begin{aligned}
\angle \mathrm{X} & =\cos ^{-1}\left(\frac{7}{9}\right) \\
& \doteq 39^{\circ}
\end{aligned}
$$

B
7. a) In right $\triangle \mathrm{BCD}$, the length of the side opposite $\angle \mathrm{C}$ and the length of the hypotenuse are given.

$$
\begin{aligned}
\sin C & =\frac{\text { opposite }}{\text { hypotenuse }} \\
\sin C & =\frac{B D}{B C} \\
\sin C & =\frac{5}{9} \\
\angle C & \doteq 34^{\circ}
\end{aligned}
$$

b) In right $\triangle E F G$, the length of the side opposite $\angle \mathrm{E}$ and the length of the hypotenuse are given.

$$
\begin{aligned}
\sin \mathrm{E} & =\frac{\text { opposite }}{\text { hypotenuse }} \\
\sin \mathrm{E} & =\frac{\mathrm{FG}}{\mathrm{EG}} \\
\sin \mathrm{E} & =\frac{4}{7} \\
\angle \mathrm{E} & \doteq 35^{\circ}
\end{aligned}
$$

c) In right $\triangle \mathrm{HJK}$, the length of the side opposite $\angle \mathrm{H}$ and the length of the hypotenuse are given.

$$
\begin{aligned}
\sin \mathrm{H} & =\frac{\text { opposite }}{\text { hypotenuse }} \\
\sin \mathrm{H} & =\frac{\mathrm{JK}}{\mathrm{HJ}} \\
\sin \mathrm{H} & =\frac{10}{16} \\
\angle \mathrm{H} & \doteq 39^{\circ}
\end{aligned}
$$

d) In right $\triangle \mathrm{MNP}$, the length of the side opposite $\angle \mathrm{N}$ and the length of the hypotenuse are given.

$$
\begin{aligned}
\sin \mathrm{N} & =\frac{\text { opposite }}{\text { hypotenuse }} \\
\sin \mathrm{N} & =\frac{\mathrm{MP}}{\mathrm{NP}} \\
\sin \mathrm{~N} & =\frac{6}{11} \\
\angle \mathrm{~N} & \doteq 33^{\circ}
\end{aligned}
$$

8. a) In right $\triangle \mathrm{QRS}$, the length of the side adjacent to $\angle \mathrm{Q}$ and the length of the hypotenuse are given.

$$
\begin{aligned}
\cos \mathrm{Q} & =\frac{\text { adjacent }}{\text { hypotenuse }} \\
\cos \mathrm{Q} & =\frac{\mathrm{QR}}{\mathrm{QS}} \\
\cos \mathrm{Q} & =\frac{18}{24} \\
\angle \mathrm{Q} & =41^{\circ}
\end{aligned}
$$

b) In right $\triangle \mathrm{TUV}$, the length of the side adjacent to $\angle \mathrm{U}$ and the length of the hypotenuse are given.

$$
\begin{aligned}
\cos \mathrm{U} & =\frac{\text { adjacent }}{\text { hypotenuse }} \\
\cos \mathrm{U} & =\frac{\mathrm{TU}}{\mathrm{UV}} \\
\cos \mathrm{U} & =\frac{5}{24} \\
\angle \mathrm{U} & \doteq 78^{\circ}
\end{aligned}
$$

c) In right $\triangle \mathrm{WYX}$, the length of the side adjacent to $\angle \mathrm{Y}$ and the length of the hypotenuse are given.

$$
\begin{aligned}
\cos \mathrm{Y} & =\frac{\text { adjacent }}{\text { hypotenuse }} \\
\cos \mathrm{Y} & =\frac{\mathrm{XY}}{\mathrm{WY}} \\
\cos \mathrm{Y} & =\frac{9}{10} \\
\angle \mathrm{Y} & \doteq 26^{\circ}
\end{aligned}
$$

d) In right $\triangle \mathrm{ABZ}$, the length of the side adjacent to $\angle \mathrm{A}$ and the length of the hypotenuse are given.

$$
\begin{aligned}
\cos \mathrm{A} & =\frac{\text { adjacent }}{\text { hypotenuse }} \\
\cos \mathrm{A} & =\frac{\mathrm{AB}}{\mathrm{AZ}} \\
\cos \mathrm{~A} & =\frac{2}{5} \\
\angle \mathrm{~A} & \doteq 66^{\circ}
\end{aligned}
$$

9. a) Sketch the triangles so that the ratio of the length of the side opposite $\angle \mathrm{B}$ to the length of the hypotenuse is $\frac{3}{5}$. For example:

b) Sketch the triangles so that the ratio of the length of the side adjacent to $\angle \mathrm{B}$ to the length of the hypotenuse is $\frac{5}{8}$. For example:

c) Sketch the triangles so that the ratio of the length of the side opposite $\angle \mathrm{B}$ to the length of the hypotenuse is $\frac{1}{4}$. For example:

d) Sketch the triangles so that the ratio of the length of the side adjacent to $\angle \mathrm{B}$ to the length of the hypotenuse is $\frac{4}{9}$. For example:

10. I could use the sine and cosine ratios to determine the measures of both acute angles, or I could use the sine or cosine ratio to determine the measure of one angle and then use the fact that the sum of the angles in a triangle is 180° to determine the measure of the other angle.
a) In right $\triangle \mathrm{CDE}$:

$$
\begin{aligned}
\cos \mathrm{C} & =\frac{\text { adjacent }}{\text { hypotenuse }} \\
\cos \mathrm{C} & =\frac{\mathrm{CD}}{\mathrm{CE}} \\
\cos \mathrm{C} & =\frac{2.4}{2.5} \\
\angle \mathrm{C} & \doteq 16.3^{\circ}
\end{aligned}
$$

Lesson 2.6 Applying the Trigonometric Ratios

A

3. a) In right $\triangle \mathrm{ABC}$, the lengths of AC and BC are given.

AC is the hypotenuse and BC is the side opposite $\angle \mathrm{A}$.
So, I would use the sine ratio.
b) In right $\triangle \mathrm{DEF}$, the lengths of DE and EF are given.

DE is the side adjacent to $\angle \mathrm{D}$ and EF is the side opposite $\angle \mathrm{D}$.
So, I would use the tangent ratio.
c) In right $\triangle \mathrm{GHJ}$, the lengths of GH and GJ are given.

GJ is the hypotenuse and GH is the side adjacent to $\angle \mathrm{G}$.
So, I would use the cosine ratio.
d) In right $\triangle X Y Z$, the lengths of $X Z$ and $Y Z$ are given.

YZ is the side adjacent to $\angle \mathrm{Y}$ and XZ is the side opposite $\angle \mathrm{Y}$.
So, I would use the tangent ratio.
4. a) In right $\triangle \mathrm{KMN}$, the length of KM is given and I need to determine the length of KN .

KM is the hypotenuse and KN is the side adjacent to $\angle \mathrm{K}$.
So, I will use the cosine ratio.

$$
\begin{aligned}
\cos \mathrm{K} & =\frac{\text { adjacent }}{\text { hypotenuse }} \\
\cos \mathrm{K} & =\frac{\mathrm{KN}}{\mathrm{KM}} \\
\cos 37^{\circ} & =\frac{m}{5.8} \quad \text { Solve for } m . \\
5.8 \cos 37^{\circ} & =\frac{m(5.8)}{5.8} \\
5.8 \cos 37^{\circ} & =m \\
m & =4.6320 \ldots
\end{aligned}
$$

KN is approximately 4.6 cm long.
9. Sketch and label a diagram to represent the information in the problem.
$58 \mathrm{~km} \underbrace{(25 \mathrm{~km}}_{3}$
BP is the distance from the base to the sick person.
PH is the distance from the sick person to the hospital.
BH is the distance from the base to the hospital.
$\angle \mathrm{H}$ is the angle between the path the helicopter took due north and the path it will take to return directly to its base.
a) In right $\triangle \mathrm{BHP}, \mathrm{BH}$ is the hypotenuse and BP and PH are the legs.

Use the Pythagorean Theorem.

$$
\begin{aligned}
\mathrm{BH}^{2} & =\mathrm{BP}^{2}+\mathrm{PH}^{2} \\
\mathrm{BH}^{2} & =35^{2}+58^{2} \\
& =4589 \\
\mathrm{BH} & =\sqrt{4589} \\
& =67.7421 \ldots
\end{aligned}
$$

The distance between the hospital and the base is approximately 68 km .
b) In right $\triangle \mathrm{BHP}, \mathrm{BP}$ is the side opposite $\angle \mathrm{H}$ and PH is the side adjacent to $\angle \mathrm{H}$.

$$
\begin{aligned}
\tan \mathrm{H} & =\frac{\text { opposite }}{\text { adjacent }} \\
\tan \mathrm{H} & =\frac{\mathrm{BP}}{\mathrm{PH}} \\
\tan \mathrm{H} & =\frac{35}{58} \\
\angle \mathrm{H} & =31.1088 \ldots{ }^{\circ}
\end{aligned}
$$

The angle between the path the helicopter took due north and the path it will take to return directly to its base is approximately 31°.
10. Sketch and label a diagram to represent the information in the problem.

XY is the distance travelled along the road.
YZ is the rise of the road.
XZ is the horizontal distance travelled.
$\angle \mathrm{X}$ is the angle of inclination of the road.
a) In right $\triangle \mathrm{XYZ}, \mathrm{YZ}$ is the side opposite $\angle \mathrm{X}$ and XY is the hypotenuse.

$$
\begin{aligned}
\sin X & =\frac{\text { opposite }}{\text { hypotenuse }} \\
\sin X & =\frac{Y Z}{X Y} \\
\sin X & =\frac{1}{15} \\
\angle X & =3.8225 \ldots
\end{aligned}
$$

The angle of inclination of the road is approximately 4°.
b) In right $\triangle \mathrm{XYZ}, \mathrm{XY}$ is the hypotenuse and XZ and YZ are the legs.

Use the Pythagorean Theorem.

$$
\begin{aligned}
\mathrm{XY}^{2} & =\mathrm{XZ}^{2}+\mathrm{YZ}^{2} \quad \text { Isolate the unknown. } \\
\mathrm{XZ}^{2} & =\mathrm{XY}^{2}-\mathrm{YZ}^{2} \\
\mathrm{XZ}^{2} & =15^{2}-1^{2} \\
& =224 \\
\mathrm{XZ} & =\sqrt{224} \\
& =14.9666 \ldots
\end{aligned}
$$

The horizontal distance travelled is approximately 15.0 m .

