2.6/2.7 Applying the Trigonometric Ratios/Involving more than one triangle

Solving a triangle means to determine the measures of all the
 and the \qquad angles in the triangle.

We can use any of the three primary trigonometric ratios to do this. useful:

$$
\text { 1) } a^{2}+b^{2}=c^{2}
$$

 add to 180°
Ex. \#1: Solve this triangle. Give the measures to the nearest tenth where necessary.
$c: \tan C=\frac{0}{A}$

$$
\tan \alpha=\frac{6}{10}
$$

$$
\begin{aligned}
& \theta: 180-90-31^{\circ} \\
&=59^{\circ} \\
& x: a^{2}+b^{2}=c^{2} \\
& 10^{2}+6^{2}=x^{2} \\
& 136=\sqrt{x} \\
& 11.7=x
\end{aligned}
$$

Ex. \#2: Solve this triangle. Give the measures to the nearest tenth

$$
\begin{array}{lll}
\begin{array}{ll}
\frac{\text { where necessary. }}{\sin 25^{\circ}} & =\frac{5}{x} \\
x=11.8 & \frac{\tan 25^{\circ}}{1}-\frac{5}{y}
\end{array} \quad \begin{array}{l}
\theta \\
x
\end{array} \quad 180-90-25 \\
& =65^{\circ}
\end{array}
$$

Ex. \#3: A small table has the shape of a regular octagon as shown. There is a strip of wood veneer around the edge of the table. What is the length of this veneer to the nearest centimetre?

$$
\begin{aligned}
& \sin \theta=\frac{0}{H} \\
& \frac{\sin 22.5^{\circ}}{1}=\frac{y}{15}
\end{aligned}
$$

$$
=
$$

* hint: find tho side (or angle) that both I's share!

Example \#1: Calculate the length of $\overline{C D}$ to the nearest tenth of a centimetre

$$
\begin{aligned}
& \sin \theta=\frac{0}{11} \\
& \frac{\sin 47^{\circ}}{1}=\frac{4.2}{y} \\
& y=5.74 \ldots
\end{aligned}
$$

$$
\cos B=\frac{A}{A}
$$

Example \#2: Determine the height of the taller building to the nearest tenth of a meter.

meter
Example \#3: How far apart are the fires to the nearest foot?

Tower is 10 m tall.

$$
\begin{array}{cc}
\frac{\tan 85^{\circ}=\frac{y}{1}}{10} & z=286.36 \\
y=114.30 \mathrm{~m} & a^{2}+b^{2}=c^{2} \\
14.3^{2}+286.36^{2}=x^{2} \\
308 m^{2} & =x
\end{array}
$$

