3.1 Factors and Multiples of Whole Numbers

A prime number is a number that is only divisible by one and itself. e.g. $2,3,5,7,11, \ldots$

A factor of a number is any number that will \qquad divide evenly into it. e.g. $12: 1,2,3,4,6,12$

The prime factorization of a number is that number written as a \qquad product of its prime factors.
e.g. $12=2 \cdot 2 \cdot 3$ on $12=(2)(2)(3)$

Ex. \#1: Write the prime factorization of 3300 .

i) factor tree

$$
\begin{aligned}
& 3300=2 \cdot 2 \cdot 3 \cdot 5 \cdot 5 \cdot 11 \\
& \text { or } \\
& 3300=2^{2} \cdot 3 \cdot 5^{2} \cdot 11
\end{aligned}
$$

The prime factors of 3300 are

The prime factorization of 3300 is:

\qquad or ever miner, then it is not Disisid by my matte \& 2.

The greatest common factor (GCF) is the largest number that will evenly into a group of numbers.

Ex. \#2: Determine the greatest common factor of 138 and 198.
Method 1 -wite out al s factors of each.
$138: 1,2,3,6,23,46,69,138$
$198: 1,2,3,6,11,18,33,66,99,190$

* tales to long!

Petter!

* Method 2

$$
138=2 \cdot 3 \cdot 23
$$

(2) 69

$$
198=2 \cdot 3^{2} \cdot 11
$$

(2) 99
common factors: one 2 à one 3

$$
\begin{aligned}
G C F & =2 \cdot 3 \\
& =6
\end{aligned}
$$

The greatest common factor is: \qquad 6

The least common multiple (LCM) is the smallest number that a group of numbers will div! de into.

Ex.\#3: Determine the least common multiple of 18, 20, and 30.
Method 1-list multiples of each numites.

$$
\begin{aligned}
& 18: 18,36,54,72,90,108 \ldots \\
& 20: 20,40,60,80,100,120 \ldots \\
& 30: 30,60,90,120,150 \ldots \\
& * \text { takes too Song! }
\end{aligned}
$$

17 Sector the for

Bettor Method 2

(2) 9
(3) (3)
(2) (2)

$$
\begin{aligned}
L C M & =2^{2} \cdot 3^{2} \cdot 5 \\
& =180
\end{aligned}
$$

 arponews.

