vertical stretch/compression
3.1 Quadratic Functions in Vertex Form - Part $2 y=a\left(x^{*}-p\right)^{2}+q_{\lambda}$

1. Graph the following quadratic functions:

2. Without graphing precisely (just a sketch), deterring the number of \mathbf{x}-intercepts:
a) $f(x)=0.5 x^{2}-7$
b) $g(x)=-2(x+1)^{2}$
c) $f(x)=-\frac{1}{6}(x-5)^{2}-11$

3. Determine the equation of a Quadratic Function in Vertex Form from its graph.

$$
\begin{aligned}
& \text { a) } \begin{array}{c}
y=a(x-p)^{2}+q \\
3 \\
3 \\
-5-3 \\
3=a(-5-(-3))^{2}+1 \\
3=a(4)+1 \\
\frac{2}{4}=\frac{4 a}{4} \\
\frac{1}{2}=a
\end{array} \\
& =1
\end{aligned}
$$

bryunarunticam

4. Deterimethe equationofla) above ifthoparabola opensupward and is translated 3 units to hemet.

5. Determine a quadratic function in vertex form that has the following characteristics: vertex at ($0,-3$) and passes through the point ($5,-4$).

$$
\begin{aligned}
& p^{\prime} q \\
& y= a(x-p)^{2}+q \\
&(-4)= a(5-0)^{2}+(-3) \\
&-4=a(25)-3 \\
&+3 \\
& \frac{-1}{25}=\frac{255 a}{25}
\end{aligned}
$$

Practice: p. 157 \#4, Sac, 6, 7, 8, 9
(QUI Znext class!)
$-\frac{1}{25}=a$

