3.1 Quadratic Functions in Vertex Form - Part 1

A quadratic function is a polynomial of the \qquad degree.
The graph of a quadratic function is called a \qquad
Graphs of Quadratic Functions in Vertex Form:

$$
y=a(x-p)^{2}+q
$$

(p, q) are coorim aces of the vertex

Part 1 : \qquad Vertex (O,O)

Graph $y=x^{2}$ and $y=-x^{2}$ using a table of values.

$x^{\prime}=0$

vertical sketch/
Graph the following Quadratic Functions. These graphs will have a \qquad

$$
y=x^{2}+2
$$

Part II: $\frac{y=x^{2}+q}{r}$ Vertex $(0, q)$ These graphs will have a

Coordinates of the vertex	$(0,2)$
Axis of symmetry	$x=0$
Opening	up
Miil/Max y value of	$y=2$
Range freer	$y \geqslant 2$

$$
y=x^{2}-1
$$

Coordinates of the vertex	$(0,-1)$
Axis of symmetry	$x=0$
Opening	up
Miip/Max	$y=-1$
Range	$y \geqslant-1$

Part III: $y=(x-\rho)^{2} \quad$ Vertex (p, O)
$y=(x-2)^{2} \quad$ Use opposite sigh

$1+$ $y=(x-2)^{2}$

Coordinates of the vertex	$(2,0)$
Axis of symmetry	$x=2$
Opening	up
Ming Max	$y=0$
Range	$y \geqslant 0$

$$
y=(x+3)^{2}
$$

Coordinates of the vertex	$(-3,0)$
Axis of symmetry	$x=-3$
Opening	$u p$
(Min/ Max	$y=0$
Range	$y \geqslant 0$

Practice: page: 157 \# 1, 2. You will need to do all graphing questions on GRAPH paper.

