3.3 Completing the Square - Part 1

From grade 10, we can expand a squared binomial to find a patter for factoring perfect square trinomials. $(x+6)^{2}$
$=(x+6)(x+6)$ perfect square trinomial

$$
=x^{2}+12 x+36
$$

Recall: venter form $\rightarrow y=a(x-p)^{2}+q$
Standard form $\rightarrow y=a x^{2}+b x+c$
A technic called "Completing the Square" is used to change equations from standard form into V ertox form. Vertex form is preferred because it is much easy to graph than standard form.

Example 1: Rewrite the following quadratic functions in vertex form.

$$
\begin{aligned}
& \text { a) } y=\left(x^{2}+12 x\right) \\
& y=1\left(x^{2}+12 x+36-36\right) \\
& y=\left(x^{2}+12 x+36\right)-36 \\
& y=(x+6)^{2}-36 \\
& \text { venter }(-6,-36) \\
& \text { b) } y=\left(x^{2}-4 x\right)-3 \\
& y=\left(x^{2}-4 x+4-4\right)-3 \\
& y=\left(x^{2}-4 x+4\right)-4-3 \\
& y=(x-2)^{2}-7 \\
& \text { venter }(2,-7)
\end{aligned}
$$

$$
\begin{aligned}
& \text { vaicabo (dst two) } \\
& \text { (2) ads a constant } \\
& \text { term that makes } \\
& \text { it perpact square } \\
& \text { trinomial ar th not } \\
& \text { function surstract } \\
& \left\{c=\left(\frac{b}{2}\right)^{2}\right\}=\left(\frac{12}{2}\right)^{2} \\
& \begin{array}{l}
\text { (3) factor perfect squanto } \\
\text { thinomi e e alt } \\
\text { collect lino }
\end{array} \\
& \text { terectic } 11
\end{aligned}
$$

Example 2: Rewrite the following quadratic functions in vertex form.
a) y

$$
y=\underbrace{2 x^{2}+8 x}
$$

Munstuns
must Rind GCF

- rarialsso.

$$
\begin{aligned}
y & =2\left(x^{2}+4 x\right) \\
y & =2\left(x^{2}+4 x+4-4\right) \\
& =2\left(x^{2}+4 x+4\right)-8 \\
& =2(x+2)^{2}-8
\end{aligned}
$$

c) $y=5 x^{2}+30 x+41$

$$
\begin{aligned}
& y=5\left(x^{2}+6 x\right)+41 \\
& y=5\left(x^{2}+6 x+9-9\right)+41 \\
& y=5\left(x^{2}+6 x+9\right)-45+41 \\
& y=5(x+3)^{2}-4
\end{aligned}
$$

