Example 1: Determine the maximum or minimum value of the function and the value of \boldsymbol{x} at

$$
\begin{gathered}
\left(\frac{b}{2}\right)^{\text {which it occurs: }}=\left(\frac{-6}{2}\right)^{2}=(-3)^{2}=9 \\
\text { a) } y=\left(x^{2}-6 x\right)-4 \\
y=\left(x^{2}-6 x+9-9\right)-4 \\
y=\left(x^{2}-6 x+9\right)-9-4 \\
y=(x-3)^{2}-13
\end{gathered}
$$

$$
\begin{aligned}
& \text { complete the square } \\
& \text { b) } y=-2 x^{2}+\frac{5}{2} x \\
& \text { CF }=-2^{2} \\
& y=-2\left(x^{2}-\frac{5}{4} x\right) \\
& y=-2\left(x^{2}-\frac{5}{4} x+\frac{25}{64}-\frac{25}{64}\right) \\
& y=-2\left(x^{2}-\frac{5}{4} x+\frac{25}{64}\right)-\frac{25}{32} \\
& y=-2\left(x-\frac{5}{8}\right)^{2}+\frac{25}{32} \\
& \left(\frac{b}{2}\right)^{2}=\left(-\frac{5}{4.2}\right)^{2}=\left(\frac{-5}{8}\right)^{2}=\frac{25}{64} \\
& G C F=-12\left(-\frac{25}{64}\right)=+\frac{25}{32}
\end{aligned}
$$

Example 2: Verify in two different ways that the two algebraic forms represent the same function:

$$
\text { CF }=-4
$$

$$
\begin{aligned}
& \quad y=-4(x+1)^{2}+6 \\
& \qquad \text { chang to stando } \\
& y=-4(x+1)(x+1)+6 \\
& y=-4\left(x^{2}+x+x+1\right)+6 \\
& y=-4\left(x^{2}+2 x+1\right)+6 \\
& y=-4 x^{2}-8 x-4+6 \\
& y=-4 x^{2}-8 x+2
\end{aligned}
$$

$$
\begin{aligned}
& y=\left(-4 x^{2}-8 x\right)+2 \\
& C \text { chance to }
\end{aligned}
$$

change to vertax form

$$
\begin{aligned}
& y=-4\left(x^{2}+2 x\right)+2 \\
& y=-4\left(x^{2}+2 x+1-1\right)+2 \\
& y=-4\left(x^{2}+2 x+1\right)+4+2 \\
& y=-4(x+1)^{2}+6
\end{aligned}
$$

$$
\left(\frac{b}{2}\right)^{2}=\left(\frac{2}{2}\right)^{2}=(1)^{2}=1
$$

Example 3: A theatre company has 300 season ticket subscribers. The directors have decided to increase the price of a season ticket from the current price of $\$ 400$. A survey of the subscribers has determined that for every $\$ 20$ increase in price, 10 subscribers would not renew their season tickets.
a) What price would maximize the revenue from season tickets?

Example 4A sporting goods storesells flip-flop for $\$ 8$. At this price their weekly gales are

$=\left(-200 n^{2}+2000 n\right)+120000$

$$
\left(\frac{b}{2}\right)^{2}=\left(\frac{-10}{2}\right)^{2}=(-5)^{2}=25
$$

$$
R=-200\left(n^{2}-10 n+25\right)+5000+120000
$$

$$
R=-200(n-5)^{2}+125000
$$

vertex $(5,125000)$ max. revenue $\$ 125000$
\# of price increased
Practice: p. 192 \# 6bd, 7bc, Bc, 15a, 18ab, 19ab

