4.2 Part 1 Factoring Polynomial Expressions

The Following are guidelines for factoring polynomials.
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6. Lastly, always check to see if there is any further factoring.
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4.2 Part2 Factoring Quadratic Equations

Once a Quadratic Equation is Factored and is equated to zero, we can find the
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For this product to equal zero

Either one or both brackets must equal zero
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t These are the x-intercepts.
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Slmple Trinomials
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