

The path of a dog jumping off a dock can be determined by the equation: $h(d)=-\frac{3}{10} d^{2}+\frac{11}{10} d+2$ Where h is the height above the surface of the water and d is the horizontal distance the dog jumps, both in feet. Determine the horizontal distance of the jump.

$$
\begin{aligned}
& D=-3 d^{2}+11 d+20 \\
& O=\left(-3 d^{2}+15 d\right)(-4 d+20)
\end{aligned}
$$

$$
0=-3 d(d-5)-4(d-5)
$$

$$
0=(-3 d-4)(d-5)
$$

$$
-3 d-4=0
$$

$$
\frac{-3 d}{-3}=\frac{4}{-3}
$$

rough graph

let $y=0$

The length of an outdoor lacrosse field is 10 m less than twice the width.
add The length of an outdoor lacrosse of the field is $6600 \mathrm{~m}^{2}$.
10 Determine the dimensions of an outdoor lacrosse field (by factoring).

$$
\begin{aligned}
& x+10=2 \omega \\
& -10-10 \\
& x=2 w-10
\end{aligned}
$$

Practice: p230 \#8be, 9cd, 11, 13

$$
A=l w
$$

$$
6600=(2 \omega-10)(\omega)
$$

$$
\begin{aligned}
& 6600=\frac{2 \omega^{2}-10 \omega-6600}{2}
\end{aligned}
$$

$$
0=2 w^{2}-10 w-6600
$$

$$
0=2\left(\omega^{2}-5 w-3300\right)
$$

$$
\begin{aligned}
& 0=2(w-60)(w+55) \\
& w-60=0 \\
& w=60 \mathrm{~m} \text { indadmissing }
\end{aligned}
$$

$$
x=\int(6)-5
$$

$$
=120-10
$$

$$
l=110 \mathrm{~m}
$$

