$y = \alpha(x-p)^2 + q$

Pre-Calculus 11 4.3 Part 1 Solving by completing the Square / Square Rooting

Solving by Square Rooting – use this process when the initial quadratic equation is in

Vertex form.

1.
$$x^2 - 64 = 0$$

$$+ 64 + 64$$

$$\sqrt{x^2 + 364}$$

$$\sqrt{x^2 + 364}$$

$$\sqrt{x^2 + 364}$$

O isolate the squared

@ square root both sides.

2.
$$2x^{2} - 18 = 0$$
 $+ 8 + 8$
 $2x^{2} = 8$
 $2x^{2} - 9$
 $2x^{2} = 9$
 $2x^{2} - 9$

3.
$$(x+2)^2 - 6 = 0$$

 $+6$ $+6$

$$5(x+2)^2 = 56$$

 $x+2=-56$
 $-2+56=-4.44$
 $x=-2+56=-4.44$

4.
$$2(x-3)^2 - 14 = 0$$
 $+(14 + 14)$
 $2(x-3)^2 = 14$
 $3(x-3)^2 = 57$
 $-3 = +57$
 $-3 = 57$
 $-3 = 57$

y = ax2 +bx +c

Solving by Completing the Square and Square Rooting – use when the quadratic equation is

initially in Standard form.

$$I(x^{2}+6x)-3=0$$

$$(x^{2}+6x+9-9)-3=0$$

$$(x+3)^{2}-1/2=0$$

$$x+3=\pm 5/2$$

$$2(-x^{2}+4x+7=0)=-1$$

$$(x^{2}-4x)-7=0$$

$$(x^{2}-4x)-7=0$$

$$(x^{2}-4x+4-4)-7=0$$

$$(x^{2}-4x+4-4)-7=0$$

$$(x^{2}-4x+4-4)-7=0$$

$$x+3=\pm 5/2$$

$$x+3=\pm 5/2$$

$$x+4=\pm 5/$$