6.4 Solving Rational Equations

- You can solve a rational equation by multiplying both sides of the equation by a common denominator (clear denominators). This eliminates the fractions from the equation. Then solve the resulting equation.
- Check that the potential roots (solutions, zeros, ...) satisfy the original equation, are NOTnonpermissible values and are realistic in the context of a word problem.

Identify the LCD: ${ }^{12}\left(\frac{?}{3}+\frac{?}{4}-\frac{?}{2}\right)$

$$
x^{3}\left(\frac{?}{x^{2}}+\frac{?}{x}+\frac{?}{x^{3}}\right) \quad(x+2)(x-2)\left(\frac{?}{x+2}+\frac{?}{x-2}-\frac{?}{x^{2}-4}\right)
$$

(3)

Steps: Factor/ Non-permissible Values/ Identify LCD / Eliminate Denominators / Solve / Check
Example: Solve the following rational equations.
x^{2} (a) $\frac{3}{x^{2}}+\frac{4}{x}=\frac{-1}{1}$ npr: $x \neq 0$

$$
\frac{4(x)(x+1)}{x}-\frac{3(x)(x+1)}{x+1}=x(x+1) \quad \text { check } x=2
$$

$$
[4(x+1)]-[3(x)]=x(x+1)
$$

$$
(4 x+4)-(3 x)=x^{2}+x
$$

$$
\begin{aligned}
& x+y=x^{2}+x \\
& -x-4
\end{aligned}
$$

$$
0=x^{2}-4
$$

$$
O=(x+2)(x-2)
$$

$$
\begin{aligned}
& L C D=x^{2}
\end{aligned}
$$

$$
\begin{aligned}
& L C D=(x+2)(x-2) \\
& n p v: x \neq 2 \\
& (4 x-2)(x-2)-(x+1)(x+2)=x^{2}-4 x+24 \\
& \left(4 x^{2}-9 x+2\right)-\left(x^{2}+3 x+2\right)=x^{2}-4 x+24 \\
& 4 x^{2}-9 x+22-x^{2}-3 x-22-x^{2}+4 x-24=0 \\
& 2 x^{2}-8 x-24=0 \\
& 2\left(x^{2}-4 x-12\right)=0 \\
& 2(x-6)(x+2)=0 \\
& x=6 \quad x \rightarrow-12 n p r \\
& \text { chectc } x=6 \\
& \frac{4(6)-1}{6+2}-\frac{6+1}{6-2}=\frac{6^{2}-4(6)+24}{6^{2}-4} \\
& \frac{23}{8}-\frac{714}{488}=\frac{36}{32} 8 \\
& \frac{9}{8}=\frac{9}{8} \\
& \begin{aligned}
\left.(x-6)(x-3)(\text { d }) \frac{9}{x-3}-\frac{4}{x-6}=\frac{18}{x^{2}-9 x+18}\right) \text { LCD: }(x-6)(x-3) \\
\text { npr } x \neq 3,6
\end{aligned} \\
& {[9(x-6)]-[4(x-3)]=18} \\
& (9 x-54)-(4 x-12)=18 \\
& 9 x-54-4 x+12=18 \\
& \begin{aligned}
5 x-4 \not 2 & =18 \\
+42 & +42
\end{aligned} \\
& \frac{5 x}{5}=\frac{60}{5} \\
& x=12 \\
& \text { checx } x=12 \\
& \frac{9}{2-3}-\frac{4}{12-6}=\frac{10}{12^{2}-9(12)+18} \\
& \frac{x^{3}}{x^{3}}-\frac{x^{2}}{x^{3}}=\frac{1}{3} \\
& \frac{1}{3}=\frac{1}{3}
\end{aligned}
$$

