7.2 Quadratic Inequalities (2 var)

7.2 Quadratic Inequalities in Two Variables

A quadratic inequality in two variables may be in one of the following forms:

Where a, b ec
ane
$y<a x^{2}+b x+c$

 $x^{2}+b x$
$+C$

An inequality in two variables describes a region_ in the Cartesian plane. Any point $(\boldsymbol{x}, \boldsymbol{y})$ that Saris the inequality is a solution to the inequality. The set of all points that satisfy the inequality is called the Solution set or section region.

The parabola related to the quadratic equality $y=a x^{2}+b x+c$ is the \qquad 0 4 that divides the Cartesean plane into two possible solution regions.

When the inequality sign is \leqslant or 3 the points on the boundary are
 and the graph is a solid curve.
has

- When the inequality sign is \leqslant or 3 the points on the boundary are
 and the graph is a dasmosule.
has
Steps to graphing a quadratic inequality in two variables:

1)

2)

3)

Example 1: Graph $y<-2\left(x(-3)^{2}+1\right.$ down

$$
\text { direction tex }(3,1) \quad a=-2
$$

$$
\begin{array}{l|l|l}
\text { sanction } \\
x & y & -2 y \\
\pm 1 & 1 & -2(1)=-2 \\
\pm 2 & 4 & -2(4)=-8
\end{array}
$$

$$
T P(0,0)
$$

$$
(0)<-2((0)-3)^{2}+1
$$

$$
0<-2(-3)^{2}+1
$$

$$
0<-2(9)+1
$$

$$
\begin{aligned}
& 0<-18+1 \text { false } \\
& 0<-17 \text { fol }
\end{aligned}
$$

Example 2: Graph y Ex $^{2}-4 x-5 \quad\left(\frac{-4}{2}\right)^{2}=(-2)^{2}=4$

Example 3: Write an inequality to represent the graph.
YEa $a(x-p)^{2}+q$
$(-2) \backsim a((0)+(-1))^{2}+(-4)$
$-2 \leftrightarrows a(1)^{2}-4$
$\begin{array}{r}-2<a+\begin{array}{r}-4 \\ +4\end{array} \\ \hline 2<m a\end{array}$
y $\omega 2(x+\underset{-\infty}{ }))^{2}+(-4)$
$y<2(x+1)^{2}-4$
(0) $32((1)+1)^{2}-4$

$$
0 \infty 2(2)^{2}-4
$$

$$
0 \bigcirc 8-4
$$

$y \leq 2(x+1)(x+1)-4$

$$
y \leqslant 2\left(x^{2}+x+x+1\right)-4
$$

$$
y \leq 2\left(x^{2}+2 x+1\right)-4
$$

$$
y \leq 2(x+1)^{2}-4
$$

$$
=\quad \begin{aligned}
& y \leq 2 x^{2}+4 x+2-4 \\
& y \leq 2 x^{2}+4 x-3
\end{aligned}
$$

Example 4: Write an inequality to represent the graph.

Sub vertex in pee other point on ponabiola into $(0)=a((0)-(2))^{2}+(4)$ Simplify is solve, for 'a'.

Practice: p. 496 \# 3ab, $4 a b, 6 a b, 7 a b$
Pre-Calc 11

