

Perfect Squares

$$
1^{2}=1 \text { therefore } \sqrt{1}=1
$$

$$
2^{2}=4 \quad \therefore \sqrt{4}=2
$$

$$
\begin{aligned}
& 3^{2}=\frac{9}{16} \\
& 4^{2}=\frac{16}{} \\
& 5^{2}=\underline{25} \\
& 6^{2}=36 \\
& 7^{2}=\underline{49} \\
& 8^{2}=64 \\
& 9^{2}=\underline{81} \\
& 10^{2}=\underline{100} \\
& 11^{2}=121 \\
& 12^{2}=144
\end{aligned}
$$

Perfect Cubes

$$
\begin{aligned}
& 1^{3}=\frac{1}{8} \quad \therefore \sqrt[3]{1}=1 \\
& 2^{3}=\frac{8}{8}=2 \\
& 3^{3}=27 \\
& 4^{3}=\frac{64}{125} \\
& 5^{3}=\frac{22}{216} \\
& 6^{3}=2
\end{aligned}
$$

Entire Radical: When all the nuinhers are he root sign. (Except the index.) e.g. $\sqrt[3]{20}$
Mixed Radical: When there are numinond t of the root sign, as well as numbers under the root sign.

$$
\text { eng. } 3 \sqrt[3]{6}
$$

All mucked radicals can be written as entice radicals and vice versa.

Entire to Mixed

1. Rewrite the radicand as a product of $2 m$ more radicals. Try to use perfect roots.
2. Solve tho perfect soot (s) to mate coefficients.

Ex. \#1: Express the following entire radicals as mixed radicals.

$$
\begin{aligned}
& (\sqrt[1 a]{\sqrt{12}}(\sqrt{4 \cdot 3}) \\
& =\sqrt{4} \cdot \sqrt{3} \\
& =2 \sqrt{3} \\
& =\sqrt[3]{24} \\
& =2 \sqrt[3]{8} \sqrt[3]{3} \\
& =2 \sqrt[3]{3}
\end{aligned}
$$

Mixed to Entire

$$
\begin{aligned}
& \text { (b) } \begin{array}{l}
\sqrt{45} \\
=\sqrt{9} \cdot \sqrt{5} \\
=3 \sqrt{5}
\end{array} .=\frac{1}{}
\end{aligned}
$$

usp rime
fatetis.
$\sqrt[3]{12 \cdot 12}$
$\sqrt[3]{4 \cdot 3 \cdot 4 \cdot 3}$
$\begin{aligned} & \sqrt[3]{\sqrt[3]{2 \cdot 2 \cdot 3 \cdot 2 \cdot 2 \cdot 3}} \\ & \begin{array}{l}\sqrt[3]{2 \cdot 2 \cdot 2 \cdot} \\ 2^{3}\end{array}\end{aligned}=2 \sqrt[3]{18}$
$\frac{\sqrt[3]{2 \cdot 2 \cdot 2}}{2^{3}}=$

1. Rewrite the coefficient as a radical.
2. Multiply radicals to make a sing f radical.

Ex. \#2: Express the following mixed radicals as entire radicals.

$$
\begin{aligned}
& \sqrt{(2), 5 \sqrt[5]{3}} \\
& \text { (b) }{ }_{11} \sqrt{7} \\
& \sqrt{4} \sqrt{7} \\
& =\sqrt{28} \\
& \begin{array}{l}
H W p 218-220 \\
\# 3-5,10-12
\end{array} \\
& \text { (c) } 3 \sqrt[3]{4} \\
& \sqrt[3]{27} \sqrt[3]{4} \\
& =\sqrt[3]{108}
\end{aligned}
$$

