Exercises

A

- **4.** In which form is each equation written?
 - a) 8x 3y = 52
- **b)** 9x + 4y + 21 = 0
- c) y = 4x + 7
- **d**) y 3 = 5(x + 7)
- **5.** Determine the *x*-intercept and the *y*-intercept for the graph of each equation.
 - a) 8x 3y = 24
- **b**) 7x + 8y = 56
- c) 4x 11y = 88
- **d**) 2x 9y = 27
- **6.** Write each equation in general form.
 - a) 4x + 3y = 36
- **b**) 2x y = 7
- c) y = -2x + 6
- **d**) y = 5x 1
- 7. Graph each line.
 - a) The x-intercept is 2 and the y-intercept is -3.
 - **b**) The *x*-intercept is -6 and the *y*-intercept is 2.

В

- **8.** a) Explain how you can tell that each equation is not written in general form.
 - i) -2x + 3y + 42 = 0
 - **ii**) 4y 5x = 100

iii)
$$\frac{1}{2}x - \frac{1}{2}y + 1 = 0$$

- iv) 5y + 9x 20 = 0
- **b**) Write each equation in part a in general form.
- **9.** For each equation below:
 - i) Determine the *x* and *y*-intercepts of the graph of the equation.
 - ii) Graph the equation.
 - iii) Verify that the graph is correct.
 - a) 3x 4y = 24
- **b**) 6x 5y = -60
- c) 3x 2y = 24
- **d**) 5x y = 10
- **10.** Two numbers, *f* and *s*, have a sum of 12.
 - a) Generate some data for this relation.
 - **b**) Graph the data. Should you join the points? Explain.
 - **c**) Write an equation in general form to relate *f* and *s*.
 - **d**) Use the graph to list 6 pairs of integers that have a sum of 12.

- **11.** Rebecca makes and sells Nanaimo bars. She uses pans that hold 12 bars or 36 bars. Rebecca uses these pans to fill an order for 504 Nanaimo bars.
 - **a**) Generate some data for this relation, then graph the data.
 - **b**) Choose letters to represent the variables, then write an equation for the relation.
- **12.** Write each equation in slope-intercept form.
 - a) 4x + 3y 24 = 0
- **b**) 3x 8y + 12 = 0
- c) 2x 5y 15 = 0
- **d**) 7x + 3y + 10 = 0
- **13.** Determine the slope of the line with each equation. Which strategy did you use each time?
 - a) 4x + y 10 = 0
- **b**) 3x y + 33 = 0
- c) 5x y + 45 = 0
- $\mathbf{d)}\ 10x + 2y 16 = 0$
- **14.** Graph each equation on grid paper. Which strategy did you use each time?
 - a) x 2y + 10 = 0
- **b**) 2x + 3y 15 = 0
- c) 7x + 4y + 4 = 0
- **d**) 6x 10y + 15 = 0
- **15.** A pipe for a central vacuum is to be 96 ft. long. It will have *s* pipes each 6 ft. long and *e* pipes each 8 ft. long. This equation describes the relation: 6s + 8e = 96
 - a) Suppose 4 pieces of 6-ft. pipe are used. How many pieces of 8-ft. pipe are needed?
 - **b**) Suppose 3 pieces of 8-ft. pipe are used. How many pieces of 6-ft. pipe are needed?
 - **c**) Could 3 pieces of 6-ft. pipe be used? Justify your answer.
 - **d**) Could 4 pieces of 8-ft. pipe be used? Justify your answer.
- **16.** Pascal saves loonies and toonies. The value of his coins is \$24.
 - a) Generate some data for this relation.
 - **b**) Graph the data. Should you join the points? Explain.
 - **c**) Write an equation to relate the variables. Justify your choice for the form of the equation.
 - d) i) Could Pascal have 6 toonies and 8 loonies?
 - **ii**) Could Pascal have 6 loonies and 8 toonies? Use the graph and the equation to justify your answers.

- **17.** Use a graphing calculator or a computer with graphing software. Graph each equation. Sketch or print the graph.
 - a) x 22y 15 = 0
- **b**) 15x + 13y 29 = 0
- c) 33x + 2y + 18 = 0
- **d**) 34x y + 40 = 0
- **18.** Write each equation in general form.

 - **a)** $y = \frac{1}{3}x 4$ **b)** $y 2 = \frac{1}{3}(x + 5)$
 - c) $y + 3 = -\frac{1}{4}(x 1)$ d) $y = -\frac{3}{2}x + \frac{4}{3}$
- **19.** Choose one equation from question 18. Write it in 2 different forms. Graph the equation in each of its 3 forms. Compare the graphs.
- **20.** Describe the graph of Ax + By + C = 0, when C = 0. Include a sketch in your answer.
- **21.** a) How are the x- and y-intercepts of this line related to the slope of the line? Justify your answer.

- **b**) Is the relationship in part a true for all lines? Explain how you know.
- **22.** Match each equation with its graph. Justify your answer.

a)
$$2x + 3y - 6 = 0$$

b)
$$2x - 3y + 6 = 0$$

Graph A

Graph B

- 23. a) Why can't you use intercepts to graph the equation 4x - y = 0?
 - **b**) Use a different strategy to graph the equation. Explain your steps.

- **24.** Which equations below are equivalent? How did you find out?
 - a) y = 3x + 6
- **b**) 2x 3y 3 = 0
- c) $y-2=\frac{2}{3}(x-2)$ d) 3x-y-6=0

e)
$$y = \frac{2}{3}x - 1$$

f) $y - 3 = 3(x - 3)$
g) $y - 1 = \frac{2}{3}(x - 3)$
h) $y + 3 = 3(x - 1)$

h)
$$y + 3 = 3(x - 1)$$

- **25.** a) Write the equation of a linear function in general form that would be difficult to graph by determining its intercepts. Why is it difficult?
 - **b**) Use a different strategy to graph your equation. How did your strategy help you graph the equation?

26. If an equation of a line cannot be written in general form, the equation does not represent a linear function. Write each equation in general form, if possible. Indicate whether each equation represents a linear function.

a)
$$\frac{x}{4} + \frac{y}{3} = 1$$

b)
$$y = \frac{10}{x}$$

c)
$$y = 2x(x+4)$$

d)
$$y = \frac{x+y}{4} + 2$$

- **27.** Suppose you know the x- and y-intercepts of a line. How can you write an equation to describe the line without determining the slope of the line? Use the line with x-intercept 5 and y-intercept -3 to describe your strategy.
- **28.** The general form for the equation of a line is: Ax + By + C = 0
 - a) Write an expression for the slope of the line in terms of A, B, and C.
 - **b**) Write an expression for the *y*-intercept in terms of A, B, and C.

Reflect

Describe a situation that can be most appropriately modelled with the equation of a linear relation in general form. Show that different forms of this equation represent the same graph.