Key Ideas

- You can solve a rational equation by multiplying both sides by a common denominator. This eliminates the fractions from the equation. Then, solve the resulting equation.
- When solving a word problem involving rates, it is helpful to use a table.
- Check that the potential roots satisfy the original equation, are not non-permissible values, and, in the case of a word problem, are realistic in the context.

Check Your Understanding

Practise

1. Use the LCD to eliminate the fractions from each equation. Do not solve.

a)
$$\frac{x-1}{3} - \frac{2x-5}{4} = \frac{5}{12} + \frac{x}{6}$$

b) $\frac{2x+3}{x+5} + \frac{1}{2} = \frac{7}{2x+10}$
c) $\frac{4x}{x^2-9} - \frac{5}{x+3} = 2$

2. Solve and check each equation. Identify all non-permissible values.

a)
$$\frac{f+3}{2} - \frac{f-2}{3} = 2$$

b) $\frac{3-y}{3y} + \frac{1}{4} = \frac{1}{2y}$
c) $\frac{9}{w-3} - \frac{4}{w-6} = \frac{18}{w^2 - 9w}$

3. Solve each rational equation. Identify all non-permissible values.

+ 18

a)
$$\frac{6}{t} + \frac{t}{2} = 4$$

b) $\frac{6}{c-3} = \frac{c+3}{c^2-9} - 5$
c) $\frac{d}{d+4} = \frac{2-d}{d^2+3d-4} + \frac{1}{d-1}$
d) $\frac{x^2+x+2}{x+1} - x = \frac{x^2-5}{x^2-1}$

4. Joline solved the following rational equation. She claims that the solution is y = 1. Do you agree? Explain.

$$\frac{-3y}{y-1} + 6 = \frac{6y-9}{y-1}$$

Apply

5. A rectangle has the dimensions shown.

$$\frac{2}{x}$$

$$\frac{3-x}{x^2}$$

- a) What is an expression for the difference between the length and the width of the rectangle? Simplify your answer.
- **b)** What is an expression for the area of the rectangle? Express the answer in simplest form.
- c) If the perimeter of the rectangle is 28 cm, find the value(s) for *x*.
- **6.** Solve. Round answers to the nearest hundredth.

a)
$$\frac{26}{b+5} = 1 + \frac{3}{b-2}$$

b) $\frac{c}{c+2} - 3 = \frac{-6}{c^2 - 4}$

7. Experts claim that the golden rectangle is most pleasing to the eye. It has dimensions that satisfy the equation $\frac{l}{w} = \frac{l+w}{l}$, where *w* is the width and

l is the length.

According to this relationship, how long should a rectangular picture frame be if its width is 30 cm? Give the exact answer and an approximate answer, rounded to the nearest tenth of a centimetre.

8. The sum of two numbers is 25. The sum of their reciprocals is $\frac{1}{4}$. Determine the two numbers.

23. 3
24. Examples:
$$\frac{2}{5} + \frac{1}{5} = \frac{2+1}{5} = \frac{3}{5}$$
 and
 $\frac{2}{5} + \frac{1}{3} = \frac{2(3)+1(5)}{15} = \frac{11}{15}$
 $\frac{2}{x} + \frac{1}{x} = \frac{2+1}{x} = \frac{3}{x}$ and
 $\frac{2}{x} + \frac{1}{y} = \frac{2(y)+1(x)}{xy} = \frac{2y+x}{xy}$
25. a) The student's suggestion is correct.
Example: find the average of $\frac{1}{2}$ and $\frac{3}{4}$.
 $\left(\frac{1}{2} + \frac{3}{4}\right) \div 2 = \left(\frac{2+3}{4}\right) \times \left(\frac{1}{2}\right)$
 $= \frac{5}{8}$
Halfway between $\frac{1}{2}$ and $\frac{3}{4}$, or $\frac{4}{8}$ and $\frac{6}{8}$, is $\frac{5}{8}$.
b) $\frac{13}{4a}$, $a \neq 0$
26. Yes. Example: $\frac{1}{2} + \frac{1}{3} = \frac{5}{6}$ and $\frac{1}{2} + \frac{1}{3} = \frac{1}{\frac{6}{5}} = \frac{5}{6}$
 $\frac{1}{x} + \frac{1}{y} = \frac{x+y}{xy}$ and $\frac{1}{x} + \frac{1}{y} = \frac{1}{\frac{xy}{x+y}} = \frac{x+y}{xy}$
27. a) $\frac{1}{u} + \frac{1}{v} = \frac{u+v}{uv}$ b) 5.93 cm
c) $f = \frac{uv}{u+v}$
28. Step 3 Yes
Step 4a) $A = 2$, $B = 1$
b) $A = 3$, $B = 3$
Step 5 Always:
 $\frac{3}{x-4} + \frac{-2}{x-1} = \frac{3(x-1)+-2(x-4)}{(x-4)(x-1)}$
 $= \frac{x+5}{(x-4)(x-1)}$
6.4 Rational Equations, pages 348 to 351
1. a) $4(x-1) - 3(2x-5) = 5 + 2x$

1. a)
$$4(x-1) - 3(2x-5) = 5 + 2x$$

b) $2(2x+3) + 1(x+5) = 7$
c) $4x - 5(x-3) = 2(x+3)(x-3)$
2. a) $f = -1$
b) $y = 6, y \neq 0$
c) $w = 12, w \neq 3, 6$
3. a) $t = 2$ or $t = 6, t \neq 0$
b) $c = 2, c \neq \pm 3$
c) $d = -2$ or $d = 3, d \neq -4, 1$
d) $x = 3, x \neq \pm 1$
4. No. The solution is not a permissible value.
5. a) $\frac{3-x}{x^2} - \frac{2}{x}, \frac{3-3x}{x^2}, x > 0$
b) $\frac{3-x}{x^2} \times \frac{2}{x}, \frac{6-2x}{x^3}, x > 0$
c) $x = \frac{1}{2}$
6. a) $b = 3.44$ or $b = 16.56$
b) $c = -3.54$ or $c = 2.54$
7. $l = 15(\sqrt{5} + 1), 48.5$ cm
8. The numbers are 5 and 20.
9. The numbers are 3 and 4.

- **10.** 30 students
- **11.** The integers are 5 and 6.
- 12. a) Less than 2 min. There is more water going in at once.

b)

	Time to Fill Tub (min)	Fraction Filled in 1 min	Fraction Filled in <i>x</i> minutes
Cold Tap	2	$\frac{1}{2}$	$\frac{x}{2}$
Hot Tap	3	<u>1</u> 3	<u>x</u> 3
Both Taps	X	$\frac{1}{x}$	1

c)
$$\frac{x}{2} + \frac{x}{3} = 1$$
 d) 1.2 min

13.6h 14.a)

Distance Rate Time (km) (km/h) (h) 18 Downstream 18 х + З x + 3 8 Upstream 8 х – З <u>х – З</u> 40 ~

b)
$$\frac{18}{x+3} = \frac{8}{x-3}$$
 c) 7.8 km/h
d) $x \neq \pm 3$

16. 5.7 km/h

17. about 50 km/h west of Swift Current, and 60 km/h east of Swift Current

18. about 3.5 km/h **19.**

	Reading Rate in Pages per Day	Number of Pages Read	Number of Days
First Half	X	259	<u>259</u> x
Second Half	x + 12	259	$\frac{259}{x+12}$

about 20 pages per day for the first half of the book . a) 2 L b) 4.5 L

21.
$$a = \pm \frac{1}{3}$$

22. a) $\frac{\frac{1}{a} + \frac{1}{b}}{2} = \frac{1}{x}, x = \frac{2ab}{a+b}$
b) 4 and 12, or -6 and 2
23. a) $\frac{1}{x} - \frac{1}{y} = a$ or $\frac{1}{x} - \frac{1}{y} = a$
 $y - x$

$$y - x = axy$$

$$y = axy + x$$

$$y = x(ay + 1)$$

$$\frac{y}{ay + 1} = x$$

$$\frac{y - x}{xy} = a$$

$$y - x = axy$$

$$y = axy + x$$

$$y = axy + x$$

$$y = x(ay + 1)$$

$$\frac{y}{ay + 1} = x$$

In both, $x \neq 0$, $y \neq 0$, $ay \neq -1$.

Answers • MHR 557