Key Ideas

- You can solve a rational equation by multiplying both sides by a common denominator. This eliminates the fractions from the equation. Then, solve the resulting equation.
- When solving a word problem involving rates, it is helpful to use a table.
- Check that the potential roots satisfy the original equation, are not non-permissible values, and, in the case of a word problem, are realistic in the context.

Check Your Understanding

Practise

1. Use the LCD to eliminate the fractions from each equation. Do not solve.
a) $\frac{x-1}{3}-\frac{2 x-5}{4}=\frac{5}{12}+\frac{x}{6}$
b) $\frac{2 x+3}{x+5}+\frac{1}{2}=\frac{7}{2 x+10}$
c) $\frac{4 x}{x^{2}-9}-\frac{5}{x+3}=2$
2. Solve and check each equation. Identify all non-permissible values.
a) $\frac{f+3}{2}-\frac{f-2}{3}=2$
b) $\frac{3-y}{3 y}+\frac{1}{4}=\frac{1}{2 y}$
c) $\frac{9}{w-3}-\frac{4}{w-6}=\frac{18}{w^{2}-9 w+18}$
3. Solve each rational equation. Identify all non-permissible values.
a) $\frac{6}{t}+\frac{t}{2}=4$
b) $\frac{6}{c-3}=\frac{c+3}{c^{2}-9}-5$
c) $\frac{d}{d+4}=\frac{2-d}{d^{2}+3 d-4}+\frac{1}{d-1}$
d) $\frac{x^{2}+x+2}{x+1}-x=\frac{x^{2}-5}{x^{2}-1}$
4. Joline solved the following rational equation. She claims that the solution is $y=1$. Do you agree? Explain.
$\frac{-3 y}{y-1}+6=\frac{6 y-9}{y-1}$

Apply

5. A rectangle has the dimensions shown.

a) What is an expression for the difference between the length and the width of the rectangle? Simplify your answer.
b) What is an expression for the area of the rectangle? Express the answer in simplest form.
c) If the perimeter of the rectangle is 28 cm , find the value(s) for x.
6. Solve. Round answers to the nearest hundredth.
a) $\frac{26}{b+5}=1+\frac{3}{b-2}$
b) $\frac{c}{c+2}-3=\frac{-6}{c^{2}-4}$
7. Experts claim that the golden rectangle is most pleasing to the eye. It has dimensions that satisfy the equation $\frac{l}{w}=\frac{l+w}{l}$, where w is the width and l is the length.
According to this relationship, how long should a rectangular picture frame be if its width is 30 cm ? Give the exact answer and an approximate answer, rounded to the nearest tenth of a centimetre.
8. The sum of two numbers is 25 . The sum of their reciprocals is $\frac{1}{4}$. Determine the two numbers.
9. 3
10. Examples: $\frac{2}{5}+\frac{1}{5}=\frac{2+1}{5}=\frac{3}{5}$ and

$$
\begin{aligned}
& \frac{2}{5}+\frac{1}{3}=\frac{2(3)+1(5)}{15}=\frac{11}{15} \\
& \frac{2}{x}+\frac{1}{x}=\frac{2+1}{x}=\frac{3}{x} \text { and } \\
& \frac{2}{x}+\frac{1}{y}=\frac{2(y)+1(x)}{x y}=\frac{2 y+x}{x y}
\end{aligned}
$$

25. a) The student's suggestion is correct.

Example: find the average of $\frac{1}{2}$ and $\frac{3}{4}$.

$$
\begin{aligned}
\left(\frac{1}{2}+\frac{3}{4}\right) \div 2 & =\left(\frac{2+3}{4}\right) \times\left(\frac{1}{2}\right) \\
& =\frac{5}{8}
\end{aligned}
$$

Halfway between $\frac{1}{2}$ and $\frac{3}{4}$, or $\frac{4}{8}$ and $\frac{6}{8}$, is $\frac{5}{8}$.
b) $\frac{13}{4 a}, a \neq 0$
26. Yes. Example: $\frac{1}{2}+\frac{1}{3}=\frac{5}{6}$ and $\frac{1}{2}+\frac{1}{3}=\frac{1}{\frac{6}{5}}=\frac{5}{6}$

$$
\frac{1}{x}+\frac{1}{y}=\frac{x+y}{x y} \text { and } \frac{1}{x}+\frac{1}{y}=\frac{1}{\frac{x y}{x+y}}=\frac{x+y}{x y}
$$

27. a) $\frac{1}{u}+\frac{1}{v}=\frac{u+v}{u v}$
b) 5.93 cm
c) $f=\frac{u v}{u+v}$
28. Step 3 Yes

Step 4a) $A=2, B=1$
b) $A=3, B=3$

Step 5 Always:

$$
\begin{aligned}
\frac{3}{x-4}+\frac{-2}{x-1} & =\frac{3(x-1)+-2(x-4)}{(x-4)(x-1)} \\
& =\frac{x+5}{(x-4)(x-1)}
\end{aligned}
$$

6.4 Rational Equations, pages 348 to 351

1. a) $4(x-1)-3(2 x-5)=5+2 x$
b) $2(2 x+3)+1(x+5)=7$
c) $4 x-5(x-3)=2(x+3)(x-3)$
2. a) $f=-1$
b) $y=6, y \neq 0$
c) $w=12, w \neq 3,6$
b) $c=2, c \neq \pm 3$
c) $d=-2$ or $d=3, d \neq-4,1$
d) $x=3, x \neq \pm 1$
3. No. The solution is not a permissible value.
4. a) $\frac{3-x}{x^{2}}-\frac{2}{x}, \frac{3-3 x}{x^{2}}, x>0$
b) $\frac{3-x}{x^{2}} \times \frac{2}{x}, \frac{6-2 x}{x^{3}}, x>0$
c) $x=\frac{1}{2}$
5. a) $b=3.44$ or $b=16.56$
b) $c=-3.54$ or $c=2.54$
6. $l=15(\sqrt{5}+1), 48.5 \mathrm{~cm}$
7. The numbers are 5 and 20.
8. The numbers are 3 and 4 .
9. 30 students
10. The integers are 5 and 6 .
11. a) Less than 2 min. There is more water going in at once.
b)

	Time to Fill Tub (min)	Fraction filled in $\mathbf{1 ~ m i n ~}$	Fraction filled in x minutes
Cold Tap	2	$\frac{1}{2}$	$\frac{x}{2}$
Hot Tap	3	$\frac{1}{3}$	$\frac{x}{3}$
Both Taps	x	$\frac{1}{x}$	1

c) $\frac{x}{2}+\frac{x}{3}=1$
d) 1.2 min
13. 6 h
14. a)

	Distance $(\mathbf{k m})$	Rate $(\mathbf{k m} / \mathrm{h})$	Time (h)
Downstream	18	$x+3$	$\frac{18}{x+3}$
Upstream	8	$x-3$	$\frac{8}{x-3}$

b) $\frac{18}{x+3}=\frac{8}{x-3}$
c) $7.8 \mathrm{~km} / \mathrm{h}$
d) $x \neq \pm 3$
15. 28.8 h
16. $5.7 \mathrm{~km} / \mathrm{h}$
17. about $50 \mathrm{~km} / \mathrm{h}$ west of Swift Current, and $60 \mathrm{~km} / \mathrm{h}$ east of Swift Current
18. about $3.5 \mathrm{~km} / \mathrm{h}$
19.

	Reading Rate in Pages per Day	Number of Pages Read	Number of Days
First Half	x	259	$\frac{259}{x}$
Second Half	$x+12$	259	$\frac{259}{x+12}$

about 20 pages per day for the first half of the book
20. a) 2 L
b) 4.5 L
21. $a= \pm \frac{1}{3}$
22. a) $\frac{\frac{1}{a}+\frac{1}{b}}{2}=\frac{1}{x}, x=\frac{2 a b}{a+b}$
b) 4 and 12 , or -6 and 2
23. a) $\begin{array}{rlrl}\frac{1}{x}-\frac{1}{y} & =a \quad \text { or } & \frac{1}{x}-\frac{1}{y} & =a \\ y-x & =a x y & \frac{y-x}{x y} & =a \\ y & =a x y+x & y-x & =a x y \\ y & =x(a y+1) & y & =a x y+x \\ \frac{y}{a y+1} & =x & y & =x(a y+1) \\ & & \frac{y}{a y+1} & =x\end{array}$

In both, $x \neq 0, y \neq 0, a y \neq-1$.

