### 9.2 Quadratic Inequalities in One Variable, pages 476-487

6. Choose a strategy to solve each inequality. Explain your strategy and why you chose it.
a) $x^{2}-2 x-63>0$
b) $2 x^{2}-7 x-30 \geq 0$
c) $x^{2}+8 x-48<0$
d) $x^{2}-6 x+4 \geq 0$
7. Solve each inequality.
a) $x(6 x+5) \leq 4$
b) $4 x^{2}<10 x-1$
c) $x^{2} \leq 4(x+8)$
d) $5 x^{2} \geq 4-12 x$
8. A decorative fountain shoots water in a parabolic path over a pathway. To determine the location of the pathway, the designer must solve the inequality $-\frac{3}{4} x^{2}+3 x \leq 2$, where $x$ is the horizontal distance from the water source, in metres.

a) Solve the inequality.
b) Interpret the solution to the inequality for the fountain designer.
9. A rectangular storage shed is to be built so that its length is twice its width. If the maximum area of the floor of the shed is $18 \mathrm{~m}^{2}$, what are the possible dimensions of the shed?
10. David has learned that the light from the headlights reaches about 100 m ahead of the car he is driving. If $v$ represents David's speed, in kilometres per hour, then the inequality $0.007 v^{2}+0.22 v \leq 100$ gives the speeds at which David can stop his vehicle in 100 m or less.

a) What is the maximum speed at which David can travel and safely stop his vehicle in the $100-\mathrm{m}$ distance?
b) Modify the inequality so that it gives the speeds at which a vehicle can stop in 50 m or less.
c) Solve the inequality you wrote in part b). Explain why your answer is not half the value of your answer for part a).

### 9.3 Quadratic Inequalities in Two Variables, pages 488-500

11. Write an inequality to describe each graph, given the function defining the boundary parabola.
a)

b)

e) $y \geq \frac{1}{12} x$

12. a) $15 x+10 y \leq 120$, where $x$ represents the number of movies and $y$ represents the number of meals.
b) $y \leq-1.5 x+12$

c) The region below the line in quadrant I ( $x \geq 0, y \geq 0$ ) shows which combinations will work for her budget. The values of $x$ and $y$ must be whole numbers.
13. a) $\$ 30$ for a laptop and $\$ 16$ for a DVD player
b) $30 x+16 y \geq 1000$, where $x$ represents the number of laptops sold and $y$ represents the number DVD player sold.
c) $y \geq-1.875 x+62.5$ The region above the line in quadrant I shows which combinations will give the desired
 commission. The values of $x$ and $y$ must be whole numbers.
14. a) $\{x \mid x<-7$ or $x>9, x \in \mathrm{R}\}$
b) $\{x \mid x \leq-2.5$ or $x \geq 6, x \in \mathrm{R}\}$
c) $\{x \mid-12<x<4, x \in R\}$
d) $\{x \mid x \leq 3-\sqrt{5}$ or $x \geq 3+\sqrt{5}, x \in R\}$
15. a) $\left\{x \left\lvert\,-\frac{4}{3} \leq x \leq \frac{1}{2}\right., x \in \mathrm{R}\right\}$
b) $\left\{x \left\lvert\, \frac{5-\sqrt{21}}{4}<x<\frac{5+\sqrt{21}}{4}\right., x \in \mathrm{R}\right\}$
c) $\{x \mid-4 \leq x \leq 8, x \in R\}$
d) $\left\{x \left\lvert\, x \leq \frac{-6-2 \sqrt{14}}{5}\right.\right.$
or $\left.x \geq \frac{-6+2 \sqrt{14}}{5}, x \in R\right\}$
16. a) $\left\{x \left\lvert\, \frac{6-2 \sqrt{3}}{3} \leq x \leq \frac{6+2 \sqrt{3}}{3}\right., x \in \mathrm{R}\right\}$
b) The path has to be between those two points to allow people up to 2 m in height to walk under the water.
17. The length can be anything up to and including 6 m . The width is just half the length, so it is a maximum of 3 m .
18. a) $104.84 \mathrm{~km} / \mathrm{h}$
b) $0.007 v^{2}+0.22 v \leq 50$
c) The solution to the inequality within the given context is $0<v \leq 70.25$. The maximum stopping speed of $70.25 \mathrm{~km} / \mathrm{h}$ is not half of the answer from part a) because the function is quadratic not linear.
19. a) $y \leq \frac{1}{2}(x+3)^{2}-4$
b) $y>2(x-3)^{2}$
20. a)


c)

d)

21. a) $y<x^{2}+3$
b) $y \leq-(x+4)^{2}+2$
22. a) $y \leq 0.003 t^{2}-0.052 t+1.986$, $0 \leq t \leq 20, y \geq 0$

b) $0.003 t^{2}-0.052 t-0.014 \leq 0$; the years it was at most $2 \mathrm{t} /$ ha were from 1975 to 1992.
23. a) $r \leq 0.1 v^{2}$

You cannot have a negative value for the speed or the radius. Therefore, the domain is

$\{v \mid v \geq 0, v \in R\}$ and the range is $\{r \mid r \geq 0, r \in \mathrm{R}\}$.
b) Any speed above $12.65 \mathrm{~m} / \mathrm{s}$ will complete the loop.
16. a) $20 \leq \frac{1}{20} x^{2}-4 x+90$
b) $\{x \mid 0 \leq x \leq 25.86$ or $54.14 \leq x \leq 90, x \in \mathrm{R}\}$; the solution shows where the cable is at least 20 m high.

