9.2 Quadratic Inequalities in One Variable, pages 476–487

6. Choose a strategy to solve each inequality. Explain your strategy and why you chose it.

a)
$$x^2 - 2x - 63 > 0$$

b)
$$2x^2 - 7x - 30 \ge 0$$

c)
$$x^2 + 8x - 48 < 0$$

d)
$$x^2 - 6x + 4 \ge 0$$

7. Solve each inequality.

a)
$$x(6x + 5) \le 4$$

- **b)** $4x^2 < 10x 1$
- **c)** $x^2 \le 4(x+8)$
- **d)** $5x^2 \ge 4 12x$
- **8.** A decorative fountain shoots water in a parabolic path over a pathway. To determine the location of the pathway, the designer must solve the inequality

 $-\frac{3}{4}x^2 + 3x \le 2$, where x is the horizontal distance from the water source, in metres.

- a) Solve the inequality.
- **b)** Interpret the solution to the inequality for the fountain designer.
- **9.** A rectangular storage shed is to be built so that its length is twice its width. If the maximum area of the floor of the shed is 18 m², what are the possible dimensions of the shed?

10. David has learned that the light from the headlights reaches about 100 m ahead of the car he is driving. If *v* represents David's speed, in kilometres per hour, then the inequality $0.007v^2 + 0.22v \le 100$ gives the speeds at which David can stop his vehicle in 100 m or less.

- a) What is the maximum speed at which David can travel and safely stop his vehicle in the 100-m distance?
- **b)** Modify the inequality so that it gives the speeds at which a vehicle can stop in 50 m or less.
- c) Solve the inequality you wrote in part b). Explain why your answer is not half the value of your answer for part a).

9.3 Quadratic Inequalities in Two Variables, pages 488–500

11. Write an inequality to describe each graph, given the function defining the boundary parabola.

- **4.** a) $15x + 10y \le 120$, where x represents the number of movies and y represents the number of meals.
 - **b)** $y \le -1.5x + 12$

- c) The region below the line in quadrant I $(x \ge 0, y \ge 0)$ shows which combinations will work for her budget. The values of xand y must be whole numbers.
- 5. a) \$30 for a laptop and \$16 for a DVD player
 - **b)** $30x + 16y \ge 1000$, where x represents the number of laptops sold and y represents the number DVD player sold.
 - c) $y \ge -1.875x + 62.5$ The region above the line in quadrant I shows which combinations will give the desired

commission. The values of *x* and *y* must be whole numbers.

- **6.** a) $\{x \mid x < -7 \text{ or } x > 9, x \in \mathbb{R}\}$
 - **b)** $\{x \mid x \le -2.5 \text{ or } x \ge 6, x \in \mathbb{R}\}$
 - c) $\{x \mid -12 < x < 4, x \in \mathbb{R}\}$

d)
$$\{x \mid x \le 3 - \sqrt{5} \text{ or } x \ge 3 + \sqrt{5}, x \in \mathbb{R}\}$$

7. a)
$$\left\{ x \mid -\frac{4}{3} \le x \le \frac{1}{2}, x \in \mathbb{R} \right\}$$

b) $\left\{ x \mid \frac{5 - \sqrt{21}}{4} < x < \frac{5 + \sqrt{21}}{4}, x \in \mathbb{R} \right\}$
c) $\left\{ x \mid -4 \le x \le 8, x \in \mathbb{R} \right\}$

d)
$$\left\{ x \mid x \le \frac{-6 - 2\sqrt{14}}{5} \\ \text{or } x \ge \frac{-6 + 2\sqrt{14}}{5}, x \in \mathbb{R} \right\}$$

8. a)
$$\left\{ x \mid \frac{6 - 2\sqrt{3}}{3} \le x \le \frac{6 + 2\sqrt{3}}{3}, x \in \mathbb{R} \right\}$$

- **b)** The path has to be between those two points to allow people up to 2 m in height to walk under the water.
- **9.** The length can be anything up to and including 6 m. The width is just half the length, so it is a maximum of 3 m.
- **10. a)** 104.84 km/h
 - **b)** $0.007v^2 + 0.22v \le 50$

c) The solution to the inequality within the given context is $0 < v \le 70.25$. The maximum stopping speed of 70.25 km/h is not half of the answer from part a) because the function is quadratic not linear.

d)

0

13. a)
$$y < x^2 + 3$$

b)
$$y \le -(x + 4) + 2$$

14. a) $y \le 0.003t^2 - 0.052t + 1.986,$ $0 \le t \le 20, y \ge 0$

 $y \le (x-1)^2 - 6$

b) $0.003t^2 - 0.052t - 0.014 \le 0$; the years it was at most 2 t/ha were from 1975 to 1992.

15. a) $r \le 0.1v^2$ You cannot have a negative value for the speed or the radius. Therefore, the domain is

 $\{v \mid v \ge 0, v \in \mathbb{R}\}$ and the range is

$$\{r \mid r \ge 0, r \in \mathbb{R}\}.$$

- b) Any speed above 12.65 m/s will complete the loop.
- **16. a)** $20 \le \frac{1}{20}x^2 4x + 90$
 - **b)** { $x \mid 0 \le x \le 25.86$ or 54.14 $\le x \le 90, x \in R$ }; the solution shows where the cable is at least 20 m high.

Answers • MHR 583