# **Chapter 9 Practice Test**

# **Multiple Choice**

For #1 to #5, choose the best answer.

**1.** An inequality that is equivalent to 3x - 6y < 12 is

**A** 
$$y < \frac{1}{2}x - 2$$

**B** 
$$y > \frac{1}{2}x - 2$$

**c** 
$$y < 2x - 2$$

**D** 
$$y > 2x - 2$$

**2.** What linear inequality does the graph show?



**3.** What is the solution set for the quadratic inequality  $6x^2 - 7x - 20 < 0$ ?

**A** 
$$\left\{ x \mid x \le -\frac{4}{3} \text{ or } x \ge \frac{5}{2}, x \in \mathbb{R} \right\}$$
  
**B**  $\left\{ x \mid -\frac{4}{3} \le x \le \frac{5}{2}, x \in \mathbb{R} \right\}$   
**C**  $\left\{ x \mid -\frac{4}{3} < x < \frac{5}{2}, x \in \mathbb{R} \right\}$   
**D**  $\left\{ x \mid x < -\frac{4}{3} \text{ or } x > \frac{5}{2}, x \in \mathbb{R} \right\}$ 

**4.** For the quadratic function *q*(*x*) shown in the graph, which of the following is true?



- **A** There are no solutions to q(x) > 0.
- **B** All real numbers are solutions to  $q(x) \ge 0$ .
- **C** All real numbers are solutions to  $q(x) \leq 0$ .
- **D** All positive real numbers are solutions to q(x) < 0.
- **5.** What quadratic inequality does the graph show?



## **Short Answer**

- **6.** Graph  $8x \ge 2(y 5)$ .
- **7.** Solve  $12x^2 < 7x + 10$ .
- **8.** Graph  $y > (x 5)^2 + 4$ .
- **9.** Stage lights often have parabolic reflectors to make it possible to focus the beam of light, as indicated by the diagram.



Suppose the reflector in a stage light is represented by the function  $y = 0.02x^2$ . What inequality can you use to model the region illuminated by the light?

**10.** While on vacation, Ben has \$300 to spend on recreation. Scuba diving costs \$25/h and sea kayaking costs \$20/h. What are all the possible ways that Ben can budget his recreation money?



## **Extended Response**

- **11.** Malik sells his artwork for different prices depending on the type of work. Pen and ink sketches sell for \$50, and watercolours sell for \$80.
  - a) Malik needs an income of at least \$1200 per month. Write an inequality to model this situation.
  - **b)** Graph the inequality. List three different ordered pairs in the solution.
  - c) Suppose Malik now needs at least \$2400 per month. Write an inequality to represent this new situation. Predict how the answer to this inequality will be related to your answer in part b).
  - **d)** Solve the new inequality from part c) to check your prediction.
- **12.** Let f(x) represent a quadratic function.
  - a) State a quadratic function for which the solution set to f(x) ≤ 0 is {x | -3 ≤ x ≤ 5, x ∈ R}. Justify your answer.
  - **b)** Describe all quadratics for which solutions to  $f(x) \le 0$  are of the form  $m \le x \le n$  for some real numbers m and n.
  - c) For your answer in part b), explain whether it is more convenient to express quadratic functions in the form f(x) = ax<sup>2</sup> + bx + c or f(x) = a(x p)<sup>2</sup> + q, and why.
- **13.** The normal systolic blood pressure, p, in millimetres of mercury (mmHg), for a woman a years old is given by  $p = 0.01a^2 + 0.05a + 107$ .
  - a) Write an inequality that expresses the ages for which you expect systolic blood pressure to be less than 120 mmHg.
  - **b)** Solve the inequality you wrote in part a).
  - c) Are all of the solutions to your inequality realistic answers for this problem? Explain why or why not.

#### Chapter 9 Practice Test, pages 504 to 505

- **1.** B
- **2.** A
- **3.** C
- **4.** B
- **5.** C





- **9.**  $y \ge 0.02x^2$
- **10.**  $25x + 20y \le 300$ , where x represents the number of hours scuba diving  $(x \ge 0)$  and y represents the number of hours sea kayaking  $(y \ge 0)$ .



**11. a)**  $50x + 80y \ge 1200$ , where x represents the number of ink sketches sold  $(x \ge 0)$  and y represents the number of watercolours sold  $(y \ge 0)$ .

**b)** 
$$y \ge -\frac{5}{8}x + 15,$$
  
 $y \ge 0, x \ge 0$ 

Example: (0, 15), (2, 15), (8, 12)



- c)  $50x + 80y \ge 2400$ , where x represents the number of ink sketches sold  $(x \ge 0)$  and y represents the number of watercolours sold  $(y \ge 0)$ ; the related line is parallel to the original with a greater x-intercept and y-intercept.
- **d)**  $y \ge -\frac{5}{8}x + 30$ ,  $y \ge 0, x \ge 0$



- **12. a)** Example:  $f(x) = x^2 2x 15$ 
  - **b)** Example: any quadratic function with two real zeros and whose graph opens upward
  - c) Example: It is easier to express them in vertex form because you can tell if the parabola opens upward and has a vertex below the x-axis, which results in two zeros.
- **13. a)**  $0.01a^2 + 0.05a + 107 < 120$ 
  - **b)**  $\{x \mid -38.642 < x < 33.642, x \in \mathbb{R}\}$
  - **c)** The only solutions that make sense are those where *x* is greater than 0. A person cannot have a negative age.

#### Cumulative Review, Chapters 8–9, pages 508 to 509

- **1.** a) B b) D c) A d) C
- **2.** (-2.2, 10.7), (2.2, -2.7)
- **3.** a) (-1, -4), (2, 5)
- **b)** The ordered pairs represent the points where the two functions intersect.

**4.** a) b > 3.75 b) b = 3.75 c) b < 3.75**5.** 

|   | Solving Linear-Quadratic Systems                                                                 |                                                                                                                                   |                                               |  |
|---|--------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|--|
|   | Substitution Method                                                                              | Elimination Method                                                                                                                |                                               |  |
|   | Determine which variable to solve for.                                                           | Determine<br>which variable<br>to eliminate.                                                                                      | Multiply the<br>linear equation<br>as needed. |  |
|   | Solve the linear equation for the chosen variable.                                               |                                                                                                                                   |                                               |  |
|   | Substitute the<br>expression for the<br>variable into the<br>quadratic equation and<br>simplify. | Add a new linear equation and quadratic equation.                                                                                 |                                               |  |
| ĺ | Solve New Quadratic Equation                                                                     |                                                                                                                                   |                                               |  |
|   | No Solution                                                                                      | Substitute the value(s) into<br>the original linear equation to<br>determine the corresponding<br>value(s) of the other variable. |                                               |  |