Pre-Calculus 11 - Review

(calculators, scrap and graph paper permitted)

Multiple Choice

Identify the choice that best completes the statement or answers the question.

- 1. Classify the number $\sqrt{\frac{16}{4}}$.
I. Positive integer
II. Rational number
III. Irrational number
IV. Real number
a. I, II, and IV
b. III and IV
c. II and IV
d. I and II
\qquad 2. Which set of numbers contains all rational numbers?
a. $-5, \sqrt{10}, 0.858585$.
b. $0, \sqrt{25},-1 . \overline{6}$
c. $5, \frac{5}{10}, \sqrt{7}$
d. $-\sqrt{5},-\sqrt{49},-3.35$
\qquad 3. Write $\frac{4}{9}$ as a square root.
a. $\sqrt[3]{\frac{64}{729}}$
b. $\sqrt{\frac{16}{18}}$
c. $\sqrt{\frac{8}{81}}$
d. $\sqrt{\frac{16}{81}}$
\qquad 4. Simplify: $3^{\frac{1}{2}} \cdot 3^{\frac{1}{2}}$
a. $3^{\frac{1}{4}}$
b. 3
c. 1
d. $\sqrt{3}$
\qquad 5. Which power is equivalent to $(\sqrt[7]{-125})^{4}$?
a. $-125^{\frac{4}{7}}$
b. $(-125)^{\frac{7}{4}}$
c. $(-125)^{\frac{4}{7}}$
d. $-125^{\frac{7}{4}}$

6. Which expression is equivalent to $\left(\frac{50}{32}\right)^{-\frac{3}{2}}$?
a.
$\left(\frac{25}{16}\right)^{\frac{3}{2}}$
b.
$\left(\frac{16}{25}\right)^{\frac{2}{3}}$
c. $\sqrt{\left(\frac{16}{25}\right)^{3}}$
d. $\sqrt[3]{\left(\frac{16}{25}\right)^{2}}$
\qquad 7. Write $\frac{1}{25}$ as a power with a negative exponent.
a. 2^{-5}
b. 5^{-2}
c. $(-5)^{2}$
d. -5^{-2}
7. Simplify $4 x^{-6} \cdot 2 x^{3}$. Write the expression with positive exponents.
a. $\frac{x^{3}}{64}$
b. $\frac{8}{x^{3}}$
c. $\frac{64}{x^{3}}$
d. $-\frac{x^{3}}{8}$
8. Evaluate $\left(\frac{9^{\frac{5}{8}}}{9^{\frac{1}{8}} \cdot 9^{\frac{1}{4}}}\right)^{8}$. Write the answer as an integer or a fraction in lowest terms.
a. $\frac{81}{5}$
b. $-\frac{1}{81}$
c. 81
d. $\frac{1}{81}$
9. Simplify $\left(\frac{5}{2} a^{-2} b^{6}\right)^{-3}$. Write the expression with positive exponents.
a. $\frac{125 a^{6}}{8 b^{18}}$
b. $\frac{8 b^{3}}{125 a^{5}}$
c. $\frac{125 b^{16}}{8 a^{6}}$
d. $\frac{8 a^{6}}{125 b^{18}}$
10. Evaluate $\left(a^{-6} b^{-3}\right)^{3}\left(a^{5} b^{6}\right)^{2}$ for $a=-1$ and $b=3$.
a. 27
b. -27
c. $\frac{1}{27}$
d. $-\frac{1}{27}$
11. Write $\sqrt{200}$ as a mixed radical.
a. $10 \sqrt{2}$
b. $2 \sqrt{50}$
c. $100 \sqrt{2}$
d. $2 \sqrt{10}$
12. Expand. $(4 x-6)(2 x-5)$
a. $8 x^{2}-32 x+30$
b. $8 x^{2}+32 x+30$
c. $8 x^{2}-8 x-30$
d. $8 x^{2}+8 x-30$
13. Determine which trinomial is factorable.
a. $x^{2}-5 x+6$
b. $x^{2}+2 x+6$
c. $x^{2}-5 x+9$
d. $2 x^{2}+5 x+6$
14. Determine which trinomial cannot be factored.
a. $2 x^{2}-9 x-5$
b. $3 x^{2}+x+2$
c. $3 x^{2}+x-2$
d. $2 x^{2}-4 x-5$
15. Factor the trinomial $x^{2}+7 x+10$.
a. $(x+5)(x+2)$
b. $(x-5)(x-2)$
c. $(x+5)(x-2)$
d. $(x-5)(x+2)$
16. Factor the trinomial $2 x^{2}+3 x-9$.
a. $(2 x+3)(x+3)$
b. $(2 x-3)(x+3)$
c. $(2 x+3)(x-3)$
d. $(2 x-3)(x-3)$
17. Factor the trinomial $60 x^{2}-27 x-54$.
a. $(5 x-6)(12 x+9)$
b. $3(5 x-6)(4 x+3)$
c. $(5 x-6)(4 x+3)$
d. $3(5 x+6)(4 x+3)$
18. Factor the trinomial $-3 x^{2}-6 x+72$.
a. $6(x-3)(x-4)$
b. $-4(x+6)(x-3)$
c. $-3(x+6)(x+4)$
d. $-3(x-4)(x+6)$
19. Factor: $49 b^{2}-64$
a. $(8 b+7)(8 b-7)$
b. $(7 b+8)(7 b-8)$
c. $(7 b-8)(7 b-8)$
d. $(7 b+8)(7 b+8)$
20. Factor: $4 x^{2}-25 y^{2}$
a. $(5 x+2 y)(5 x-2 y)$
b. $(2 x-5 y)(2 x-5 y)$
c. $(2 x+5 y)(2 x-5 y)$
d. $(2 x+5)(2 x-5)$
21. Factor: $9 m^{2}-42 m+49$
a. $(s m+1)^{4}$
b. $(5 m-1)^{s}$
c. $(3 m-49)(3 m-1)$
d. $(3 m-7)(3 m+7)$
22. Factor this polynomial expression: $2(3 x-2)^{2}+9(3 x-2)-5$
a. $2(3 x-2)(x+5)$
b. $2(3 x+2)(x-5)$
c. $3(x+1)(6 x-5)$
d. $3(x-1)(6 x+5)$
23. Factor: $0.5 x^{2}-0.02$
a. $\quad 0.5(x+0.1)(x-0.1)$
b. $(0.5 x+0.2)(x-0.2)$
c. $0.5(x+0.2)(x-0.2)$
d. $(0.5 x+0.1)(x-0.1)$
24. For a quadratic function, which characteristic of its graph is equivalent to the zero of the function?
a. minimum point
c. y-intercept
b. maximum point
d. x-intercept
25. Which graph represents the quadratic function $y=2 x+x^{2}$?
a.

c.

b.

d.

26. Which graph represents the quadratic function $y=x^{2}+x-1$?
a.

c.

b.

d.

27. What are the coordinates of the vertex of this graph of the quadratic function $y=x^{2}-2 x+2$? State whether it is a maximum point or a minimum point.

a. $(1,2)$; minimum point
b. $(1,2)$; maximum point
c. $(1,1)$; maximum point
d. $(1,1)$; minimum point
28. Identify the y-intercept of the graph of this quadratic function: $y=-3(x+3)^{2}+4$
a. 13
b. -23
c. -27
d. 23
29. Which of the following describes the translation that would be applied to the graph of $y=x^{2}$ to get the graph of $y=x^{2}+5$?
a. Translate 5 units left
c. Translate 5 units up
b. Translate 5 units down
d. Translate 5 units right
30. Which statement is NOT true for the graph of $y=x^{2}+q$?
a. When q is positive, the graph lies above the x-axis.
b. As q increases, the graph moves up.
c. The graph has the same size and shape as the graph of $y=x^{2}$.
d. When q is negative, the vertex is above the x-axis.
31. Which statement is NOT true for the graph of $y=a x^{2}$?
a. The vertex of the graph is always at the origin.
b. When a is less than -1 , the graph is the image of the graph of $y=x^{2}$ after a vertical stretch and a reflection in the x-axis.
c. When a is greater than 1 , the graph is the image of the graph of $y=x^{2}$ after a vertical stretch.
d. When $0<a<1$, the graph is the image of the graph of $y=x^{2}$ after a vertical compression and a reflection in the x-axis.
32. Identify the coordinates of the vertex of the graph of this quadratic function: $y=\frac{1}{8}(x-4)^{2}-4$
a. $(4,4)$
b. $(-4,4)$
c. $(-4,-4)$
d. $(4,-4)$
33. Match the quadratic function $y=2 x^{2}+2$ to a graph below.
a.

c.

b.

d.

34. Determine an equation of this graph of a quadratic function.

a. $\quad y=2(x-3)^{2}-4$
b. $y=2(x-3)^{2}$
c. $y=2(x+3)^{2}-4$
d. $y=-2(x-3)^{2}-4$
35. Determine an equation of this graph of a quadratic function.

a. $y=2(x+2)^{2}-4$
b. $y=-2(x-2)^{2}-4$
c. $y=-2(x+2)^{2}$
d. $y=-2(x+2)^{2}-4$
36. Determine an equation of a quadratic function with the given characteristics of its graph: coordinates of the vertex: $\mathrm{V}(0,2)$; passes through $\mathrm{A}(-2,-18)$
a. $y=-2 x^{2}+2$
b. $y=-18 x^{2}-2$
c. $y=-5 x^{2}-2$
d. $y=-5 x^{2}+2$
37. Which equation represents the same quadratic function as $y=(x+3)^{2}-1$?
a. $y=x^{2}-6 x+8$
b. $y=x^{2}+8 x+6$
c. $y=x^{2}-2 x+8$
d. $y=x^{2}+6 x+8$
38. Determine the number that would be added to $x^{2}+10 x$ to get a perfect square trinomial.
a. 100
b. 10
c. 25
d. 625
39. Write this equation in vertex form: $y=x^{2}-12 x+28$
a. $y=(x-12)^{2}+34$
b. $y=(x-6)^{2}+64$
c. $y=(x-6)^{2}-8$
d. $y=(x-12)^{2}-8$
40. Write this equation in vertex form: $y=-3 x^{2}+12 x-16$
a. $y=(x-2)^{2}-4$
b. $y=-3(x+2)^{2}+4$
c. $y=-3(x-2)^{2}-4$
d. $y=-3(x+2)^{2}-4$
41. A sports equipment company sells skates for $\$ 65$ a pair. At this price, the company sells approximately 200 pairs a week. For every increase in price of x dollars, the company will sell $40 x$ fewer pairs. Determine the equation that should be used to maximize the revenue, R dollars.
a. $R=(65+x)(100-40 x)$
b. $R=(65+x)(200-20 x)$
c. $R=(65-x)(100+40 x)$
d. $R=(65+x)(200-40 x)$
42. What are the domain and range of $y=7(x-1)^{2}-9$?
a. Domain: $\{x \mid x \leq-1, x \in R\}$
Range: $\{y \mid y \in R\}$
c. Domain: $\{x \mid x \geq 7, x \in R\}$
Range: $\{y \mid y \in R\}$
b. Domain: $\{x \mid x \in R\}$
Range: $\{y \mid y \geq-9, y \in R\}$
d. Domain: $\{x \mid x \in R\}$
Range: $\{y \mid y \leq-1, y \in R\}$
43. Identify the characteristics of this graph.

a. vertex: $(-2,2)$
axis of symmetry: $x=2$
y-intercept: 0
x-intercepts: -0 and 4
opens upward
b. vertex: $(-2,2)$
axis of symmetry: $x=-2$
y-intercept: 0
x-intercepts: 0 and -4
opens downward
c. vertex: $(2,-2)$
axis of symmetry: $x=2$
y-intercept: 0
x-intercepts: 0 and -4
opens downward
d. vertex: $(2,-2)$
axis of symmetry: $x=2$
y-intercept: 0
x-intercepts: 0 and -4
opens upward
44. Identify the x-intercepts of the graph of this quadratic function: $y=(x-3)(x+1)$
a. 3 and 1
b. 3 and -1
c. -3 and 1
d. -3 and -1
45. Determine the zeros of this quadratic function: $y=x^{2}-4 x-32$
a. 4 and -8
b. -4 and 8
c. 4 and 8
d. -4 and -8
46. Determine the x-intercepts and the coordinates of the vertex of the graph of $y=x^{2}-6 x+8$.
a. 2 and $-4 ;(3,1)$
b. 2 and $4 ;(3,1)$
c. -2 and $4 ;(-3,-1)$
d. -2 and $-4 ;(-3,1)$
47. Solve the following quadratic equation: $4 x^{2}-8 x+3=0$
a. $x=-\frac{1}{2}$ and $x=-\frac{3}{2}$
c $x=\frac{2}{3}$ and $x=2$
b. $x=\frac{1}{2}$ and $x=\frac{3}{2}$
d. $x=-2$ and $x=-6$
48. Solve the following quadratic equation: $8 x^{2}-13 x-6=0$
a. $x=-\frac{3}{8}$ and $x=2$
b. $x=-\frac{3}{2}$ and $x=\frac{1}{2}$
c. $x=\frac{3}{8}$ and $x=-2$
d. $x=\frac{1}{4}$ and $x=3$
49. Solve $(x+1)^{2}=43$.
a. $1+\sqrt{43}$ and $1-\sqrt{43}$
b. $-1+\sqrt{43}$ and $-1-\sqrt{43}$
c. $2 \sqrt{11}$
d. $\sqrt{42}$
50. Which radical expression simplifies to $2 \sqrt{2}$?
a. $\sqrt{4}$
b. $\sqrt{8}$
c. $\sqrt{16}$
d. $\sqrt{9}$
51. Which radical expression simplifies to $9 \sqrt{2}$?
a. $\sqrt{32}-\sqrt{8}+7 \sqrt{2}$
b. $\sqrt{32}-7 \sqrt{2}+\sqrt{8}$
c. $\sqrt{32}+7 \sqrt{8}-\sqrt{2}$
d. $\sqrt{2}+7 \sqrt{8}-\sqrt{32}$
52. Simplify by adding or subtracting like terms: $8 \sqrt{13}-7 \sqrt{13}+5 \sqrt{13}$
a. $6 \sqrt{10}$
b. $\sqrt{78}$
c. $10 \sqrt{13}$
d. $6 \sqrt{13}$
53. Simplify by adding or subtracting like terms: $\sqrt{9}+\sqrt{125}-\sqrt{81}+\sqrt{3125}$
a. $-8 \sqrt{5}$
b. $-8 \sqrt{3}$
c. $30 \sqrt{3}-6$
d. $30 \sqrt{5}-6$
54. Expand and simplify this expression: $-\sqrt{2}(\sqrt{7}-5)$
a. $-\sqrt{14}+5 \sqrt{2}$
b. $-7 \sqrt{2}+\sqrt{10}$
c. $-2 \sqrt{7}+5 \sqrt{2}$
d. $\sqrt{14}-\sqrt{10}$
55. Expand and simplify this expression: $(\sqrt{7}+7)(\sqrt{3}-2)$
a. $\sqrt{21}-2 \sqrt{7}+7 \sqrt{3}-14$
b. $\sqrt{21}+3 \sqrt{7}+7 \sqrt{3}+\sqrt{49}$
c. $7 \sqrt{3}-2 \sqrt{7}+7 \sqrt{7}-14$
d. $\sqrt{21}-14 \sqrt{7}-14$
56. Rationalize the denominator: $\frac{7}{7 \sqrt{5}}$
a. $\frac{7 \sqrt{5}}{35}$
b. $\frac{7 \sqrt{5}}{5}$
c. $\frac{35 \sqrt{5}}{5}$
d. $\frac{49 \sqrt{5}}{7}$
57. Expand and simplify this expression: $(\sqrt{5}-3)(5 \sqrt{5}+4)-(4 \sqrt{5}-5)^{2}$
a. $-92+29 \sqrt{5}$
b. $-18+31 \sqrt{5}$
c. $-18+29 \sqrt{5}$
d. $-92+31 \sqrt{5}$
58. Simplify this expression: $\frac{-9 \sqrt{5}-3}{\sqrt{5}}$
a. $\frac{-9-15 \sqrt{5}}{5}$
b. $-225-3 \sqrt{5}$
c. $\frac{-45 \sqrt{5}-15}{5}$
d. $\frac{-45-3 \sqrt{5}}{5}$
59. Which graph is a graph for the radical function: $y=\sqrt{x}-1$?
a.

c.

b.

d.

60. Solve this radical equation $\sqrt{x+4}-3=\square$

a. $x=6$
b. $x=-5$
c. $x=7$
d. $x=5$
61. Determine two related functions that can be graphed to solve the radical equation: $\sqrt{x+2}-5 x=10$
a. $y=\sqrt{x+2} ; y=5 x+10$
b. $y=-\sqrt{x+2} ; y=10-5 x$
c. $y=-\sqrt{x+2} ; y=5 x-10$
d. $y=\sqrt{x+2} ; y=-5 x-10$
62. Solve this equation: $9 \sqrt{x}=4$
a. $x=\frac{16}{81}$
b. $x=\frac{81}{16}$
c. $x=\frac{4}{9}$
d. $x=\frac{9}{4}$
63. Solve this equation: $\sqrt{x-3}-7=-5$
a. $x=1$
b. $x=4$
c. $x=7$
d. $x=5$
64. Solve this equation: $9=\sqrt{135-6 x}$
a. $x=8$
b. $x=9$
c. $x=10$
d. $x=7$
65. Which of the following are the non-permissible values for this rational expression? $\frac{n^{2}-2 n-3}{n^{3}-4 n^{2}+3 n}$
a. $n=\square$ and $n=1$
b. $n=0$ and $n=-1$
c. $n=0, n=-3$, and $n=-1$
d. $n=0, n=3$, and $n=1$
66. Simplify this rational expression and state the non-permissible values of the variable.
$\frac{m^{2}-16}{m^{2}+6 m+8}$
a. $\frac{m+4}{m+2} ; m=-4$ and $m=2$
b. $\frac{m+4}{m+2} ; m=-4$ and $m=-2$
c. $\frac{m-4}{m+2} ; m=4$ and $m=2$
d. $\frac{m-4}{m+2} ; m=-4$ and $m=-2$
67. Simplify this expression:
$\frac{7}{q} \div \frac{5 x}{3 q}$
a. $\frac{21 q^{2}}{5 x}, x \neq 0$
b. $\frac{21}{5 x}, q \neq 0, x \neq 0$
c. $\frac{35 x}{3 q^{2}}, q \neq 0, x \neq 0$
d. $35 x, q \neq 0$
68. Simplify this expression:
$\frac{5 p}{2} \cdot \frac{4 p}{p}$
a. $\frac{9 p}{2}, p \neq 0$
b. $10 p, p \neq-2$
c. $\frac{5 p}{8}, p \neq 0$
d. $\quad 10 p, p \neq 0$
69. Simplify this expression:
$\frac{2 x+4}{x} \div \frac{2}{x-6}$
a. $2 x^{2}-8 x-24, x \neq 0, x \neq 6$
b. $\frac{4(x+2)}{x(x-6)}, x \neq 0, x \neq 6$
c. $\frac{(x+2)(x-6)}{x}, x \neq 0, x \neq 6$
d. $\frac{x-12}{x}, x \neq 0, x \neq 6$
70. Simplify.
$\frac{5}{a}+\frac{9}{7}$
a. $\frac{14}{a+7}, a \neq-7$
b. $\frac{9 a+35}{a+7}, a \neq-7$
c. $\frac{9 a+35}{7 a}, a \neq 0$
d. $\frac{14}{7 a}, a \neq 0$
71. Simplify.
$\frac{d+5}{d^{2}}+\frac{2}{d}-3$
a. $\frac{d+4}{d^{2}}, d \neq 0$
b. $\frac{-3 d^{2}+3 d+5}{2 d^{2}}, d \neq 0$
c. $\frac{-3 d^{2}+3 d+5}{d^{2}}, d \neq 0$
d. $\frac{d+4}{2 d^{2}}, d \neq 0$
72. Simplify.
$p q-\frac{p-q}{p}+\frac{p+q}{q}$
a. $1, p \neq 0, q \neq 0$
b. $\frac{p^{2} q^{2}+p^{2}+q^{2}}{p q}, p \neq 0, q \neq 0$
c. $\frac{p^{2} q^{2}+p^{2}+q^{2}+2 p q}{p q}, p \neq 0, q \neq 0$
d. $\frac{p q}{p+q}, p \neq 0, q \neq 0$
73. Simplify.
$\frac{r+6}{r-2}+\frac{4}{2-r}$
a. $\frac{r+10}{r-2}, r \neq 2$
b. $\frac{r+2}{(r-2)^{2}}, r \neq 2$
c. $\frac{r+10}{(r-2)^{2}}, r \neq 2$
d. $\frac{r+2}{r-2}, r \neq 2$
74. Simplify.
$\frac{x-2}{x+6}+\frac{x+4}{x-1}$
a. $\frac{2 x^{2}+7 x+26}{x+5}, x \neq-6, x \neq 1, x \neq-5$
b. $\frac{x+2}{x+5}, x \neq-6, x \neq 1, x \neq-5$
c. $\frac{2 x^{2}+7 x+26}{(x+6)(x-1)}, x \neq-6, x \neq 1$
d. $\frac{x+2}{(x+6)(x-1)}, x \neq-6, x \neq 1$
75. Simplify.
$\frac{a}{a^{2}-144}-\frac{3 a-1}{a^{2}+10 a-24}$
a. $\frac{-2 a^{2}+35 a-12}{(a+12)(a-12)(a-2)}, a \neq 12, a \neq-12, a \neq 2$
b. $\frac{3 a^{2}-a}{-10 a-120}, a \neq 120$
c. $\frac{-2 a+1}{-10(a+12)}, a \neq-12$
d. $\frac{-2 a+1}{(a+12)(a-12)(a-2)}, a \neq 12, a \neq-12, a \neq 2$
76. Solve.
$\frac{16}{n}=\frac{n}{9}$
a. $n=\frac{9}{16}$
b. $n=12$ or $n=-12$
c. $n=144$ or $n=-144$
d. $n=\frac{16}{9}$
77. Solve.
$\frac{w-5}{w^{2}}=\frac{1}{20}$
a. $w=10$
c. $w=-5$
b. $w=10$ or $w=-10$
d. no solution
_- 79. Simplify: $\frac{\frac{3}{4}+2 x}{\frac{3}{4}-2 x}$
a. $\frac{3-16 x}{3+8 x}$
b. -1
c. $-\frac{3}{16 x}$
d. $\frac{3+8 x}{3-8 x}$
78. Solve.
$\frac{25}{w-6}=\frac{w-6}{w}$
a. $w=1$ or $w=-36$
c. $w=1$ or $w=36$
b. $w=-1$ or $w=36$
d. no solution
79. A freight train travels 60 km . A single locomotive pulls the train for the first half of the trip, then a second locomotive is added, doubling the speed of the train. If the total time for the trip is 54 min , what is the speed of the train with one locomotive?
a. $267 \mathrm{~km} / \mathrm{h}$
b. $\quad 133 \mathrm{~km} / \mathrm{h}$
c. $233 \mathrm{~km} / \mathrm{h}$
d. $50 \mathrm{~km} / \mathrm{h}$
80. The graph of $-4 x+7 y>1$ is
a.

c.

b.

d.

81. Solve the linear inequality: $\frac{2}{3} x+1 \geq 0$
a. $x<-1.5$
b. $x \geq-1.5$
c. $x \geq 1.5$
d. $x<1$
82. Which interval below is the solution of the inequality $4+\frac{3}{4} x<10$?
a. $x<8$
b. $x>8$
c. $x<-8$
d. $x>-8$
83. Which interval below is the solution of the inequality $3+x \leq 6$?
a. $[3, \infty)$
b. $[-\infty,-3)$
c. $(-\infty, 2]$
d. $(-\infty, 3]$
84. Solve the linear inequality $13 x-11<13+14 x$. Write the solution in interval notation.
a. $x>-24 ;(-24, \infty)$
b. $x<-3 ;(-\infty,-3)$
c. $x>8 ;(8, \infty)$
d. $x<-24 ;(-\infty,-24)$
\qquad 87. Which graph represents the solution to the inequality $y \leq-5(x+3)^{2}+4$?
a.

c.

b.

d.

85. Which point does not satisfy the inequality $y>-2(x-3)^{2}+8$?
a. $(-9,-234)$
c. $(5,16)$
b. $(1,1)$
d. (2, 0)
86. Solve the quadratic inequality: $x^{2}-2 x \geq 3$
a. $-3 \leq x \leq 1$
b. $x \leq-1$ or $x \geq 3$
c. $x \leq 3$ or $x \geq 1$
d. $-3 \leq x \leq-1$
87. The solution set to the inequality $-3 x^{2} \leq-9 x+6$ is
a. $\{x \mid 1 \leq x \leq 2, x \in R\}$
b. $\{x \mid-2 \leq x \leq-1, x \in R\}$
c. $\{x \mid x \leq-2$ or $x \geq-1, x \in R\}$
d. $\{x \mid x \leq 1$ or $x \geq 2, x \in R\}$
88. Which interval below is the solution of the inequality $x^{2}-x-90>0$?
a. $(-\infty,-9)$ or $(10, \infty)$
b. $[9,10]$
c. $(-\infty,-10]$ or $[9, \infty)$
d. $(-9,10]$
89. Solve the quadratic inequality $5 x^{2}+14 x-3 \geq 0$ algebraically. Write the solution in interval notation. Show the solution on a number line.
a. $x<-3$ or $x>0.2 ;(-\infty,-3)$ or $(0.2, \infty)$

b. $x \leq-3$ or $x \geq 0.2 ;(-\infty,-3]$ or $[0.2, \infty)$

c. $-3 \leq x \leq 0.2 ;[-3,0.2]$

d. $x \leq 0.2 ;(-\infty, 0.2]$

90. Point $\mathrm{P}(7,9)$ is on the terminal arm of an angle θ in standard position. Determine the measure of θ to the nearest degree.
a. $\theta=63^{\circ}$
b. $\theta=38^{\circ}$
c. $\theta=52^{\circ}$
d. $\theta=33^{\circ}$
91. An angle θ has its terminal arm in Quadrant 2. Which primary trigonometric ratio is greater than 0 ?
a. $\quad \cos \theta$
b. $\tan \theta$
c. $\sin \theta$
d. all 3 ratios
\qquad 95. Determine the reference angle for the angle 290° in standard position.
a. 110°
b. 20°
c. 290°
d. 70°
92. What are the three other angles in standard position that have a reference angle of 54° ?
a. $99^{\circ}, 144^{\circ}, 234^{\circ}$
b. $108^{\circ}, 162^{\circ}, 216^{\circ}$
c. $144^{\circ}, 234^{\circ}, 324^{\circ}$
d. $126^{\circ}, 234^{\circ}, 306^{\circ}$
93. The coordinates of a point P on the terminal arm of an angle are shown. What are the exact trigonometric ratios for $\sin \theta, \cos \theta$, and $\tan \theta$?

a. $\sin A=\frac{8}{17}, \cos A=-\frac{15}{17}, \tan A=-\frac{8}{15}$
b. $\sin A=-\frac{15}{17}, \cos A=\frac{8}{17}, \tan A=-\frac{15}{8}$
c. $\quad \sin A=\frac{15}{17}, \cos A=-\frac{8}{17}, \tan A=-\frac{8}{15}$
d. $\sin A=\frac{17}{8}, \cos A=-\frac{17}{15}, \tan A=-\frac{8}{15}$
94. Which angle is NOT coterminal with an angle of 190° in standard position?
a. -170°
b. -530°
c. 370°
d. 550°
95. Which expression represents the measures of all the angles coterminal with an angle of 203° in standard position?
a. $23^{\circ}+k 360^{\circ}, k \in I$
b. $203^{\circ}+k 360^{\circ}, k \in R$
c. $203^{\circ}+k 180^{\circ}, k \in I$
d. $203^{\circ}+k 30^{\circ}, k \in I$
96. For $\triangle \mathrm{DEF}$, write the Sine Law equation you would use to determine the measure of $\angle \mathrm{E}$.

a. $\frac{3.5}{\sin E}=\frac{5.3}{\sin 63^{\circ}}$
b. $\frac{\sin E}{3.5}=\frac{\sin 63^{\circ}}{5.3}$
c. $\frac{\sin E}{3.5}=\frac{\sin 77^{\circ}}{5.3}$
d. $\frac{3.5}{\sin E}=\frac{\sin 77^{\circ}}{5.3}$
\qquad 101. For $\triangle \mathrm{ABC}$, determine the measure of $\angle \mathrm{A}$ to the nearest degree.

a. 120°
b. 77°
c. 43°
d. 144°
97. For $\triangle X Y Z$, determine the measure of $\angle Z$ to the nearest degree and the measure of $X Z$ to the nearest tenth of a centimetre.

a. $\angle \mathrm{Z}=28^{\circ} ; \mathrm{XZ}=7.3 \mathrm{~cm}$
b. $\angle \mathrm{Z}=59^{\circ} ; \mathrm{XZ}=4.8 \mathrm{~cm}$
c. $\angle \mathrm{Z}=53^{\circ} ; \mathrm{XZ}=8.0 \mathrm{~cm}$
d. $\angle Z=30^{\circ} ; \mathrm{XZ}=12.1 \mathrm{~cm}$
98. For $\triangle \mathrm{PQR}$, write the Cosine Law equation you would use to determine the measure of $\angle \mathrm{Q}$.

a. $r^{2}=p^{2}+q^{2}-2 p q \cos \mathrm{R}$
b. $r^{2}=p^{2}+q^{2}-2 p q \cos \mathrm{Q}$
c. $q^{2}=p^{2}+r^{2}-2 p r \cos \mathrm{Q}$
d. $p^{2}=q^{2}+r^{2}-2 q r \cos \mathrm{P}$
\qquad 104. In $\triangle \mathrm{PMN}$, determine the length of PN to the nearest tenth of a centimetre.

a. $\quad 13.9 \mathrm{~cm}$
b. 47.4 cm
c. 9.2 cm
d. 6.9 cm
99. In $\triangle \mathrm{ABC}, \mathrm{AB}=6 \mathrm{~cm}, \mathrm{BC}=8.5 \mathrm{~cm}$, and $\mathrm{AC}=5.8 \mathrm{~cm}$. Determine the measure of $\angle \mathrm{B}$ to the nearest degree.

a. 28°
b. 91°
c. 43°
d. 0°
100. A
101. B
102. D
103. B
104. C
105. C
106. B
107. B
108. C
109. D
110. A
111. A
112. A
113. A
114. B
115. A
116. B
117. B
118. D
119. B
120. C
121. B
122. C
123. C
124. D
125. C
126. A
127. A
128. B
129. C
130. D
131. D
132. D
133. B
134. A
135. D
136. D
137. D
138. C
139. C
140. C
141. D
142. B
143. B
144. B
145. B
146. B
147. B
148. A
149. B
150. B
151. A
152. D
153. D
154. A
155. A
156. A
157. A
158. D
159. A
160. D
161. A
162. A
163. C
164. B
165. D
166. D
167. B
168. D
169. C
170. C
171. C
172. B
173. D
174. C
175. A
176. B
177. A
178. D
179. C
180. D
181. D
182. B
183. A
184. D
185. A
186. D
187. D
188. B
189. D
190. A
191. A
192. C
193. C
194. D
195. D
196. A
197. C
198. D
199. C
200. B
201. D
202. C
203. D
204. C
