Pre-Calculus 11 - Review

Multiple Choice

Identify the choice that best completes the statement or answers the question.

1. Classify the number $\sqrt{\frac{16}{4}}$. I. Positive integer II. Rational number III. Irrational number IV. Real number b. III and IV a. I, II, and IV c. II and IV d. I and II 2. Which set of numbers contains all rational numbers? a. $-5, \sqrt{10}, 0.858585...$ c. $5, \frac{5}{10}, \sqrt{7}$ b. 0, $\sqrt{25}$, $-1.\overline{6}$ d. $-\sqrt{5}, -\sqrt{49}, -3.35$ 3. Write $\frac{4}{9}$ as a square root. a. $\sqrt[3]{\frac{64}{729}}$ b. $\sqrt{\frac{16}{18}}$ c. $\sqrt{\frac{8}{81}}$ d. $\sqrt{\frac{16}{81}}$ 4. Simplify: $3^{\frac{1}{2}} \cdot 3^{\frac{1}{2}}$ a. $\frac{1}{3^{\frac{1}{4}}}$ b. 3 d. $\sqrt{3}$ c. 1 5. Which power is equivalent to $(\sqrt[7]{-125})^4$? a. $\frac{4}{7}$ b. $(-125)^{\frac{7}{4}}$ c. $(-125)^{\frac{4}{7}}$ d. $-125^{\frac{7}{4}}$ 6. Which expression is equivalent to $\left(\frac{50}{32}\right)^{-\frac{3}{2}}$? a. $\left(\frac{25}{16}\right)^{\frac{3}{2}}$ b. $\left(\frac{16}{25}\right)^{\frac{2}{3}}$ c. $\sqrt{\left(\frac{16}{25}\right)^3}$ d. $\sqrt{\left(\frac{16}{25}\right)^2}$ 7. Write $\frac{1}{25}$ as a power with a negative exponent. a. 2^{-5} b. 5^{-2} c. $(-5)^2$ d. _5⁻² 8. Simplify $4x^{-6} \cdot 2x^3$. Write the expression with positive exponents. a. $\frac{x^3}{\frac{x^4}{64}}$ b. $\frac{8}{x^3}$ c. $\frac{64}{x^3}$ d. $-\frac{x^3}{8}$

	D. Evaluate $\left(\frac{9^{\frac{5}{8}}}{9^{\frac{1}{8}} \cdot 9^{\frac{1}{4}}}\right)$	⁸ . Write the answer as a	n integer or a fraction	in lowest terms.
	a. $\frac{81}{5}$	b. $-\frac{1}{81}$	c. 81	d. $\frac{1}{81}$
10		-3 . Write the expression		ıts.
	a. $\frac{125a^6}{8b^{18}}$	b. $\frac{8b^3}{125a^5}$	c. $\frac{125b^{18}}{8a^6}$	d. $\frac{8a^6}{125b^{18}}$
1	1. Evaluate $(a^{-6}b^{-3})^3$ a. 27	$(a^5b^6)^2$ for $a = -1$ and b. -27	b = 3. c. $\frac{1}{27}$	d. $-\frac{1}{27}$
12	2. Write $\sqrt{200}$ as a m a. $10\sqrt{2}$	ixed radical. b. $2\sqrt{50}$	c. 100√2	d. $2\sqrt{10}$
13	 Expand. (4x - 6)(2x a. 8x² - 32x + 30 b. 8x² + 32x + 30 	r – 5)	c. $8x^2 - 8x - 30$ d. $8x^2 + 8x - 30$	
14	4. Determine which trip a. $x^2 - 5x + 6$ b. $x^2 + 2x + 6$	nomial is factorable.	c. $x^2 - 5x + 9$ d. $2x^2 + 5x + 6$	
1:	5. Determine which trip a. $2x^2 - 9x - 5$ b. $3x^2 + x + 2$	nomial cannot be factore	d. c. $3x^2 + x - 2$ d. $2x^2 - 4x - 5$	
10	5. Factor the trinomial a. $(x+5)(x+2)$ b. $(x-5)(x-2)$	$x^2 + 7x + 10$.	c. $(x+5)(x-2)$ d. $(x-5)(x+2)$	
1′	7. Factor the trinomial a. $(2x + 3)(x + 3)$ b. $(2x - 3)(x + 3)$	$2x^2 + 3x - 9$.	c. $(2x + 3)(x - 3)$ d. $(2x - 3)(x - 3)$	
18	3. Factor the trinomial a. $(5x-6)(12x+9)$ b. $3(5x-6)(4x+3)$)	c. $(5x-6)(4x+3)$ d. $3(5x+6)(4x+3)$	
19	D. Factor the trinomial a. $6(x-3)(x-4)$ b. $-4(x+6)(x-3)$	$-3x^2 - 6x + 72.$	c. $-3(x+6)(x+4)$ d. $-3(x-4)(x+6)$	r
20). Factor: $49b^2 - 64$ a. $(8b + 7)(8b - 7)$ b. $(7b + 8)(7b - 8)$		c. $(7b - 8)(7b - 8)$ d. $(7b + 8)(7b + 8)$	

21	. Factor: $4x^2 - 25y^2$		
	a. $(5x + 2y)(5x - 2y)$	с.	(2x + 5y)(2x - 5y)
	b. $(2x - 5y)(2x - 5y)$	d.	(2x+5)(2x-5)
22	Factor: $9m^2 - 42m + 49$ a. $(3m + 7)^4$	c.	(3 <i>m</i> - 49)(3 <i>m</i> - 1)

b.
$$(3m-7)^4$$

d. $(3m-7)(3m+7)$

- 23. Factor this polynomial expression: $2(3x-2)^2 + 9(3x-2) 5$ a. 2(3x-2)(x+5)b. 2(3x+2)(x-5)c. 3(x+1)(6x-5)d. 3(x-1)(6x+5)
- 24. Factor: $0.5x^2 0.02$ c. 0.5(x + 0.1)(x 0.1)a. 0.5(x + 0.2)(x 0.2)c. 0.5(x + 0.2)(x 0.2)b. (0.5x + 0.2)(x 0.2)d. (0.5x + 0.1)(x 0.1)

25. For a quadratic function, which characteristic of its graph is equivalent to the zero of the function? a. minimum point c. y-intercept

- b. maximum point
- d. *x*-intercept
- 26. Which graph represents the quadratic function $y = 2x + x^2$?

27. Which graph represents the quadratic function $y = x^2 + x - 1$?

28. What are the coordinates of the vertex of this graph of the quadratic function $y = x^2 - 2x + 2$? State whether it is a maximum point or a minimum point.

- a. (1, 2); minimum point
- b. (1, 2); maximum point

- c. (1, 1); maximum point
- d. (1, 1); minimum point

- 29. Identify the *y*-intercept of the graph of this quadratic function: $y = -3(x + 3)^2 + 4$ a. 13 b. -23 c. -27 d. 23
- 30. Which of the following describes the translation that would be applied to the graph of $y = x^2$ to get the graph of $y = x^2 + 5$?
 - a. Translate 5 units left c. Translate 5 units up
 - b. Translate 5 units down d. Translate 5 units right
 - _ 31. Which statement is NOT true for the graph of $y = x^2 + q$?
 - a. When q is positive, the graph lies above the x-axis.
 - b. As q increases, the graph moves up.
 - c. The graph has the same size and shape as the graph of $y = x^2$.
 - d. When q is negative, the vertex is above the x-axis.
 - 32. Which statement is NOT true for the graph of $y = ax^2$?
 - a. The vertex of the graph is always at the origin.
 - b. When *a* is less than -1, the graph is the image of the graph of $y = x^2$ after a vertical stretch and a reflection in the *x*-axis.
 - c. When a is greater than 1, the graph is the image of the graph of $y = x^2$ after a vertical stretch.
 - d. When 0 < a < 1, the graph is the image of the graph of $y = x^2$ after a vertical compression and a reflection in the *x*-axis.

33. Identify the coordinates of the vertex of the graph of this quadratic function: $y = \frac{1}{8}(x-4)^2 - 4$

a. (4, 4) b. (-4, 4) c. (-4, -4) d. (4, -4)

34. Match the quadratic function $y = 2x^2 + 2$ to a graph below.

35. Determine an equation of this graph of a quadratic function.

36. Determine an equation of this graph of a quadratic function.

45. Identify the *x*-intercepts of the graph of this quadratic function: y = (x - 3)(x + 1)a. 3 and 1 b. 3 and -1 c. -3 and 1 d. -3 and -1

 46.	Determine the zeros of this quadratic function:	$y = x^2 - 4x - 32$
	a. 4 and -8 b4 and 8	c. 4 and 8 d4 and -8
47.	Determine the <i>x</i> -intercepts and the coordinates	of the vertex of the graph of $y = x^2 - 6x + 8$.
	a. 2 and -4; (3, 1)	c. -2 and 4; $(-3, -1)$
	b. 2 and 4; (3, 1)	d. -2 and -4 ; $(-3, 1)$
 48.	Solve the following quadratic equation: $4x^2 -$	
	a. $x = -\frac{1}{2}$ and $x = -\frac{3}{2}$	$x = \frac{2}{3}$ and $x = 2$
	b. $x = \frac{1}{2}$ and $x = \frac{3}{2}$	d. $x = -2$ and $x = -6$
	4 4	
 49.	Solve the following quadratic equation: $8x^2 - x^2$	
	a. $x = -\frac{3}{8}$ and $x = 2$	c. $x = \frac{3}{8}$ and $x = -2$
	b. $x = -\frac{3}{2}$ and $x = \frac{1}{2}$	d. $x = \frac{1}{4}$ and $x = 3$
		4 and $n = 5$
 50.	Solve $(x+1)^2 = 43$.	
	a. $1 + \sqrt{43}$ and $1 - \sqrt{43}$	c. $2\sqrt{11}$
	b. $-1 + \sqrt{43}$ and $-1 - \sqrt{43}$	c. $2\sqrt{11}$ d. $\sqrt{42}$
 51.	Which radical expression simplifies to $2\sqrt{2}$? a. $\sqrt{4}$ b. $\sqrt{8}$	c. √16 d. √9
	· · · · · · · · · · · · · · · · · · ·	c. 710 d. 73
 52.	Which radical expression simplifies to $9\sqrt{2}$?	
	a. $\sqrt{32} - \sqrt{8} + 7\sqrt{2}$ b. $\sqrt{32} - 7\sqrt{2} + \sqrt{8}$	c. $\sqrt{32} + 7\sqrt{8} - \sqrt{2}$ d. $\sqrt{2} + 7\sqrt{8} - \sqrt{32}$
 53.	Simplify by adding or subtracting like terms: 8	
	a. 6√10 b. √78	c. $10\sqrt{13}$ d. $6\sqrt{13}$
 54.	Simplify by adding or subtracting like terms:	$\sqrt{9} + \sqrt{125} - \sqrt{81} + \sqrt{3125}$
	a. $-8\sqrt{5}$ b. $-8\sqrt{3}$	c. $30\sqrt{3} - 6$ d. $30\sqrt{5} - 6$
	08~/3	a. $30\sqrt{5-6}$
 55.	Expand and simplify this expression: $-\sqrt{2} \left(\sqrt{2}\right)$	(7 - 5)
	a. $-\sqrt{14} + 5\sqrt{2}$	c. $-2\sqrt{7} + 5\sqrt{2}$
	b. $-7\sqrt{2} + \sqrt{10}$	d. $\sqrt{14} - \sqrt{10}$
56	Expand and simplify this expression: $(\sqrt{7} + 7)$	$7)(\sqrt{3}-2)$
 		c. $7\sqrt{3} - 2\sqrt{7} + 7\sqrt{7} - 14$
	a. $\sqrt{21} - 2\sqrt{7} + 7\sqrt{3} - 14$ b. $\sqrt{21} + 3\sqrt{7} + 7\sqrt{3} + \sqrt{49}$	d. $\sqrt{21} - 14\sqrt{7} - 14$
	· · - · · · · · · · · · · · · · · ·	• • • ·

_ 57. Rationalize the denominator: $\frac{7}{7\sqrt{5}}$

a.
$$\frac{7\sqrt{5}}{35}$$
 b. $\frac{7\sqrt{5}}{5}$ c. $\frac{35\sqrt{5}}{5}$ d. $\frac{49\sqrt{5}}{7}$

 $58. Expand and simplify this expression: (<math>\sqrt{5} - 3$)($5\sqrt{5} + 4$) - ($4\sqrt{5} - 5$)² a. $-92 + 29\sqrt{5}$ b. $-18 + 31\sqrt{5}$ c. $-18 + 29\sqrt{5}$ d. $-92 + 31\sqrt{5}$

59. Simplify this expression: $\frac{-9\sqrt{5}-3}{\sqrt{5}}$ a. $\frac{-9-15\sqrt{5}}{5}$ b. $-225-3\sqrt{5}$ c. $\frac{-45\sqrt{5}-15}{5}$ d. $\frac{-45-3\sqrt{5}}{5}$

 61.	Solve this radical equation $\sqrt{x+4} - 3 = 0$	0
	-4 -3 -2 -1 0 1 2 3 7 5 -2 -3	6 7 8 c
	a. $x = 6$ b. $x = -5$	c. $x = 7$ d. $x = 5$
 62.	Determine two related functions that can be gr a. $y = \sqrt{x+2}$; $y = 5x + 10$ b. $y = -\sqrt{x+2}$; $y = 10 - 5x$	graphed to solve the radical equation: $\sqrt{x+2} - 5x = 10$ c. $y = -\sqrt{x+2}$; $y = 5x - 10$ d. $y = \sqrt{x+2}$; $y = -5x - 10$
 63.	Solve this equation: $9\sqrt{x} = 4$ a. $x = \frac{16}{81}$ b. $x = \frac{81}{16}$	c. $x = \frac{4}{9}$ d. $x = \frac{9}{4}$
 64.	Solve this equation: $\sqrt{x-3} - 7 = -5$ a. $x = 1$ b. $x = 4$	c. $x = 7$ d. $x = 5$
 65.	Solve this equation: $9 = \sqrt{135 - 6x}$ a. $x = 8$ b. $x = 9$	c. $x = 10$ d. $x = 7$
 66.	Which of the following are the non-permissible $\frac{n^2 - 2n - 3}{n^3 - 4n^2 + 3n}$ a. $n = 0$ and $n = 1$	c. $n = 0, n = -3, \text{ and } n = -1$
	b. $n = 0$ and $n = -1$	d. $n = 0, n = 3, \text{ and } n = 1$
 67.	Simplify this rational expression and state the $\frac{m^2 - 16}{m^2 + 6m + 8}$	non-permissible values of the variable.
	a. $\frac{m+4}{m+2}$; $m = -4$ and $m = 2$	c. $\frac{m-4}{m+2}$; $m = 4$ and $m = 2$
	b. $\frac{m+4}{m+2}$; $m = -4$ and $m = -2$	d. $\frac{m-4}{m+2}$; $m = -4$ and $m = -2$
 68.	Simplify this expression: $\frac{7}{q} \div \frac{5x}{3q}$	
	a. $\frac{21q^2}{5x}$, $x \neq 0$	c. $\frac{35x}{3a^2}, q \neq 0, x \neq 0$
	b. $\frac{21}{5x}, q \neq 0, x \neq 0$	d. $35x, q \neq 0$

69. Simplify this expression: $\frac{5p}{2} \cdot \frac{4p}{p}$ b. $10p, p \neq -2$ c. $\frac{5p}{2}, p \neq 0$ a. $\frac{9p}{2}$, $p \neq 0$ d. $10p, p \neq 0$ $\frac{2x+4}{x} \div \frac{2}{x-6}$ $2x^2 - 8x - 24, x \neq 0, x \neq 6$ c. $\frac{(x+2)(x-6)}{r}$, $x \neq 0$, $x \neq 6$ d. $\frac{x-12}{r}$, $x \neq 0$, $x \neq 6$ b. $\frac{4(x+2)}{x(x-6)}$, $x \neq 0$, $x \neq 6$ _____ 71. Simplify. $\frac{5}{a} + \frac{9}{7}$ a. $\frac{14}{\alpha+7}$, $\alpha \neq -7$ c. $\frac{9a+35}{7a}$, $a \neq 0$ b. $\frac{9a+35}{a+7}$, $a \neq -7$ d. $\frac{14}{7\alpha}$, $\alpha \neq 0$ ____ 72. Simplify. $\frac{d+5}{d^2} + \frac{2}{d} - 3$ a. $\frac{d+4}{d^2}, d \neq 0$ c. $\frac{-3d^2 + 3d + 5}{d^2}, d \neq 0$ b. $\frac{-3d^2 + 3d + 5}{2d^2}, d \neq 0$ d. $\frac{d+4}{2d^2}, d \neq 0$ 73. Simplify. $pq - \frac{p-q}{p} + \frac{p+q}{q}$ a. $1, p \neq 0, q \neq 0$ c. $\frac{p^2q^2 + p^2 + q^2 + 2pq}{p\alpha}, p \neq 0, q \neq 0$ b. $\frac{p^2q^2 + p^2 + q^2}{pq}$, $p \neq 0, q \neq 0$ d. $\frac{pq}{p+q}$, $p \neq 0$, $q \neq 0$ _____ 74. Simplify. $\frac{r+6}{r-2} + \frac{4}{2-r}$ a. $\frac{r+10}{r-2}, r \neq 2$ c. $\frac{r+10}{(r-2)^2}, r \neq 2$ b. $\frac{r+2}{(r-2)^2}, r \neq 2$ d. $\frac{r+2}{r-2}, r \neq 2$

$$\begin{array}{c} \hline \\ & \hline \\ & \frac{x-2}{x+6} + \frac{x+4}{x-1} \\ & a. \quad \frac{2x^2 + 7x + 26}{x+5}, \ x \neq -6, \ x \neq 1, \ x \neq -5 \\ & b. \quad \frac{x+2}{x+5}, \ x \neq -6, \ x \neq 1, \ x \neq -5 \\ & c. \quad \frac{2x^2 + 7x + 26}{(x+6)(x-1)}, \ x \neq -6, \ x \neq 1 \\ & d. \quad \frac{x+2}{(x+6)(x-1)}, \ x \neq -6, \ x \neq 1 \end{array}$$

$$\frac{a}{a^2 - 144} - \frac{3a - 1}{a^2 + 10a - 24}$$
a.
$$\frac{-2a^2 + 35a - 12}{(a + 12)(a - 12)(a - 2)}, a \neq 12, a \neq -12, a \neq 2$$
b.
$$\frac{3a^2 - a}{-10a - 120}, a \neq 120$$
c.
$$\frac{-2a + 1}{-10(a + 12)}, a \neq -12$$
d.
$$\frac{-2a + 1}{(a + 12)(a - 12)(a - 2)}, a \neq 12, a \neq -12, a \neq 2$$

$$\frac{16}{n} = \frac{n}{9}$$
a. $n = \frac{9}{16}$
b. $n = 12 \text{ or } n = -12$
c. $n = 144 \text{ or } n = -144$
d. $n = \frac{16}{9}$

_____ 78. Solve. _____ w = 5 1

W^{*}	-5_	1
W	,2 -	20
a.	w =	10
b.	w =	10 or $w = -10$

c. w = -5d. no solution

 $--- 79. \text{ Simplify: } \frac{\frac{3}{4} + 2x}{\frac{3}{4} - 2x}$ $a. \quad \frac{3 - 16x}{3 + 8x} \qquad c. \quad -\frac{3}{16x}$ $b. \quad -1 \qquad d. \quad \frac{3 + 8x}{3 - 8x}$

80. Solve

Solve.	
$\frac{25}{25} = \frac{w-6}{2}$	
w – б w	
a. $w = 1 \text{ or } w = -36$	c. $w = 1 \text{ or } w = 36$
b. $w = -1$ or $w = 36$	d. no solution

- 81. A freight train travels 60 km. A single locomotive pulls the train for the first half of the trip, then a second locomotive is added, doubling the speed of the train. If the total time for the trip is 54 min, what is the speed of the train with one locomotive?
 - a. 267 km/h b. 133 km/h c. 233 km/h d. 50 km/h
- 82. The graph of -4x + 7y > 1 is

- 84. Which interval below is the solution of the inequality $4 + \frac{3}{4}x < 10$?
 - a. x < 8 b. x > 8 c. x < -8 d. x > -8
- 85. Which interval below is the solution of the inequality $3 + x \le 6$? a. $\begin{bmatrix} 3, \infty \end{bmatrix}$ b. $\begin{bmatrix} -\infty, -3 \end{bmatrix}$ c. $\begin{pmatrix} -\infty, 2 \end{bmatrix}$ d. $\begin{pmatrix} -\infty, 3 \end{bmatrix}$

 $\begin{array}{c} 86. \quad \text{Solve the linear inequality } 13x - 11 < 13 + 14x. \text{ Write the solution in interval notation.} \\ a. \quad x > -24; \ (-24, \infty) & c. \quad x > 8; \ (8, \infty) \\ b. \quad x < -3; \ (-\infty, -3) & d. \quad x < -24; \ (-\infty, -24) \end{array}$

87. Which graph represents the solution to the inequality $y \le -5(x+3)^2 + 4$?

88. Which point does *not* satisfy the inequality $y > -2(x-3)^2 + 8$?

a.	(-9,-234)	c.	(5,16)
b.	(1, 1)	d.	(2,0)

89. Solve the quadratic inequality: $x^2 - 2x \ge 3$

a.
$$-3 \le x \le 1$$
 c. $x \le 3 \text{ or } x \ge 1$

 b. $x \le -1 \text{ or } x \ge 3$
 d. $-3 \le x \le -1$

90. The solution set to the inequality $-3x^2 \le -9x + 6$ is

a.
$$\{x \mid 1 \le x \le 2, x \in R\}$$
 c. $\{x \mid x \le -2 \text{ or } x \ge -1, x \in R\}$

 b. $\{x \mid -2 \le x \le -1, x \in R\}$
 d. $\{x \mid x \le 1 \text{ or } x \ge 2, x \in R\}$

91. Which interval below is the solution of the inequality $x^2 - x - 90 > 0$? a. $(-\infty, -9)$ or $(10, \infty)$ b. [9, 10]c. $(-\infty, -10]$ or $[9, \infty)$ d. (-9, 10]

92. Solve the quadratic inequality $5x^2 + 14x - 3 \ge 0$ algebraically. Write the solution in interval notation. Show the solution on a number line. a. x < -3 or $x \ge 0.2$; $(-\infty, -3)$ or $(0.2, \infty)$

- 93. Point P(7, 9) is on the terminal arm of an angle θ in standard position. Determine the measure of θ to the nearest degree.
 a. θ = 63°
 b. θ = 38°
 c. θ = 52°
 d. θ = 33°
 - 94. An angle θ has its terminal arm in Quadrant 2. Which primary trigonometric ratio is greater than 0?
 - a. $\cos \theta$ b. $\tan \theta$ c. $\sin \theta$ d. all 3 ratios
- 95. Determine the reference angle for the angle 290° in standard position. a. 110° b. 20° c. 290° d. 70°

- 96. What are the three other angles in standard position that have a reference angle of 54°?
 - a. 99°, 144°, 234° c. 144°, 234°, 324°
 - b. 108°, 162°, 216° d. 126°, 234°, 306°
- 97. The coordinates of a point P on the terminal arm of an angle are shown. What are the exact trigonometric ratios for $\sin \theta$, $\cos \theta$, and $\tan \theta$?

98. Which angle is NOT coterminal with an angle of 190° in standard position?a. -170°b. -530°c. 370°d. 550°

99. Which expression represents the measures of all the angles coterminal with an angle of 203° in standard position?

a. $23^{\circ} + k360^{\circ}, k \in I$ c. $203^{\circ} + k180^{\circ}, k \in I$ b. $203^{\circ} + k360^{\circ}, k \in R$ d. $203^{\circ} + k360^{\circ}, k \in I$

100. For ΔDEF , write the Sine Law equation you would use to determine the measure of $\angle E$.

101. For $\triangle ABC$, determine the measure of $\angle A$ to the nearest degree.

 $_102$. For ∆XYZ, determine the measure of ∠Z to the nearest degree and the measure of XZ to the nearest tenth of a centimetre.

a.	$\angle Z = 28^{\circ}; XZ = 7.3 \text{ cm}$	c.	$\angle Z = 53^{\circ}; XZ = 8.0 \text{ cm}$
b.	$\angle Z = 59^{\circ}; XZ = 4.8 \text{ cm}$	d.	$\angle Z = 30^{\circ}; XZ = 12.1 \text{ cm}$

103. For $\triangle PQR$, write the Cosine Law equation you would use to determine the measure of $\angle Q$.

a. 13.9 cm b. 47.4 cm c. 9.2 cm d. 6.9 cm

105. In $\triangle ABC$, AB = 6 cm, BC = 8.5 cm, and AC = 5.8 cm. Determine the measure of $\angle B$ to the nearest degree.

1. A	45. B	89. B
2. B	46. B	90. D
3. D	47. B	91. A
4. B	48. B	92. A
5. C	49. A	93. C
6. C	50. B	94. C
7. B	51. B	95. D
8. B	52. A	96. D
9. C	53. D	97. A
10. D	54. D	98. C
11. A	55. A	99. D
12. A	56. A	100. C
13. A	57. A	100. C
14. A	58. A	101. B
15. B	59. D	102 D
16. A	60. A	102. D
17. B	61. D	103. C
18. B	62. A	104 5
19. D	63. A	104. D
20. B	64. C	105. C
21. C	65. B	
22. B	66. D	
23. C	67. D	
24. C	68. B	
25. D	69. D	
26. C	70. C	
27. A	71. C	
28. A	72. C	
29. B	73. B	
30. C	74. D	
31. D	75. C	
32. D	76. A	
33. D	77. B	
34. B	78. A	
35. A	79. D	
36. D	80. C	
37. D	81. D	
38. D	82. D	
39. C	83. B	
40. C	84. A	
41. C	85. D	
42. D	86. A	
43. B	87. D	
44. B	88. D	