

REAL NUMBERS

-all numbers that can be expressed in decimal form

-when converted to decimal form they are: *non-terminating *non-repeating **RATIONAL NUMBERS (Q)** *-numbers that can be written in fraction form.*

Block:

NATURAL NUMBERS (N)

WHOLE NUMBERS (W)

INTEGERS (I)

What is the square root of 25? What does that mean? Can you determine the square root of 24?

Perfect square is the ______ of two ______ integers. List the perfect squares to 100. Can you list the perfect cubes to 100?

Roots or radicals are the "opposite" operation of applying exponents; we can "undo" a power with a radical, and vise versa. For example:

$$3^2 = 9$$
 and $\sqrt{9} = 3$
 $\sqrt{8} = 2$ and $2^3 = 8$

Notice the relationship between the index and the exponent.

What number squared gives you 49 is the same question as what is the square root of 49. $x^2 = 49$ is the same as $\sqrt{49} = x$

Principal square root of a number is the _______square root of that number. For example:

(4)(4) = 16 and (-4)(-4) = 16 so the square root of 16 could be 4 or -4

When it is written $\sqrt{16} = 4 \leftarrow$ the principal (**positive**) square root

To indicate the negative square root $\rightarrow -\sqrt{16} = -4$

Parts of a Radical

The division (quotient) property of radicals:

$$\sqrt[n]{\frac{a}{b}} = \frac{\sqrt[n]{a}}{\sqrt[n]{b}}$$

This **property** allows you to split the radical between the numerator and denominator of the fraction. For example:

$$\sqrt[3]{\frac{8}{27} = \frac{\sqrt[3]{8}}{\sqrt[3]{27}} = \frac{2}{3}}$$

Ex. $\sqrt[5]{\frac{1}{32}} = - = -$ Ex. $\sqrt[3]{-} = - = \frac{4}{5}$

- 1. Is each number rational or irrational? Justify your answer.
 - a) $\frac{59}{32}$
 - b) 3.65
 - c) $\sqrt{16}$
 - C) VI0
- 2. Give an example of each number that is:
 - a) A whole number that is not a natural number
 - b) An integer that is not a whole number
 - c) A rational number that is not an integer
- 3. a) List the perfect squares of numbers 1 to 10.b) List the perfect cubes of numbers 1 to 10.
- 4. Without evaluating the radical, between which two integers is the value of each:

a) √75	c) ∛52
b) $\sqrt{105}$	d) ⁴ √25

5. Estimate each radical to one decimal place.

a) <u>√20</u>	d) <u>∛20</u>
b) √76	e) ³ √60
c) $\sqrt{116}$	f) $\sqrt[3]{100}$

6. Evaluate each radical. Leave your answer as a fraction in lowest terms.

7. Evaluate each radical. Leave your answer as a fraction in lowest terms.

a)	$\sqrt[3]{\frac{1}{27}}$	d)	$\sqrt[3]{\frac{1}{1000000}}$	g)	$\sqrt[3]{\frac{500}{108}}$
b)	$\sqrt[3]{\frac{125}{8}}$	e)	$\sqrt[3]{\frac{24}{81}}$	h)	$\sqrt[3]{\frac{81}{3000}}$
C)	$\sqrt[3]{\frac{1000}{27}}$	f)	$\sqrt[3]{\frac{128}{250}}$	i)	$\sqrt[4]{\frac{2401}{81}}$

8. Evaluate each radical, if possible.

a) <u>∛−1</u>	c) <u>∛</u> -64
b) \{-49	d) $\sqrt{-100}$

9. Write each number below as a: i) square root and ii) cube root

a) 5	d) 1.5
b) 7	e) 9
c) 0.9	, 8

d)
$$\sqrt{\frac{5}{100}}$$

e) $\sqrt{2.25}$
f) $\sqrt[3]{-10000}$

Radicals can be written in two forms:

Entire Radical: When all numbers are found under the radical sign and the coefficient is 1.

 \rightarrow Entire radicals are in the form: \sqrt{x}

Mixed Radical: When the radical is being multiplied by a coefficient other than 1.

→ Mixed radicals are in the form: $a\sqrt{x}$

We can express all mixed radicals as entire radicals and many entire radicals can be **simplified** to mixed radicals. To convert between these two forms, we use...

The multiplication (product) property of radicals

$$\sqrt[n]{a \cdot b} = \sqrt[n]{a} \cdot \sqrt[n]{b}$$

Entire to Mixed

Ex. #1: Simplify each radical (express the entire radicals as mixed radicals).

(a) $\sqrt{12}$	(b) $\sqrt{45}$	(c) √72	(d) $\sqrt[3]{144}$
-----------------	-----------------	---------	---------------------

Mixed to Entire 1. _____ 2. ____

Ex. #2: Express the following mixed radicals as entire radicals.

(a) $5\sqrt{3}$ (b) $2\sqrt{7}$ (c) $3\sqrt[3]{4}$

1. Identify if each number is a mixed or entire radical: $\sqrt{56}$, $4\sqrt{3}$, $\sqrt[3]{180}$, $5\sqrt[4]{6}$, $5\sqrt[3]{2}$, $\sqrt[6]{8}$, $10\sqrt[3]{2}$

Mixed radicals	Entire radicals

2. Determine the greatest perfect square factor of each.

a)	20	-		d)	45
b)	18			e)	50
C)	38			f)	85

3. Determine the greatest perfect cube factor of each.

- a) 16
 d) 24

 b) 35
 e) 30

 c) 27
 f) 54
- 4. Simplify each radical.
 - a) $\sqrt{99}$ b) $-\sqrt{108}$ c) $\sqrt{96}$ d) $\sqrt[3]{375}$ e) $\sqrt[3]{108}$ f) $\sqrt[3]{256}$
- 5. Simplify each radical.
 - a) $\sqrt{300}$ b) $-\sqrt{360}$ c) $\sqrt[3]{81}$ d) $-\sqrt[3]{12000}$
- 6. Write each mixed radical as an entire radical.
 - a) $-5\sqrt{7}$ b) $9\sqrt{6}$ c) $8\sqrt{10}$ d) $-3\sqrt[3]{12}$ e) $4\sqrt[3]{10}$ f) $10\sqrt[3]{9}$
- 7. The area of a square is 150 cm². Write the side length of the square a mixed radical.
- 8. The volume of a cube is 560 cm³. Write the edge length of the cube in simplest form.

1.3 Negative Exponents

Warm Up:

Evaluate each power.

a) 7 ² =	b) -7² =	C) (-7) ² =	d) -(7)² =	e) -(-7) ² =
Brackets influence	the solution by			
Write the rec	ciprocal.			
a) 2 →	b) -6→	C	c) $\frac{1}{2} \rightarrow$	d) $-\frac{101}{23}$ >
NEGATIVE EXPONE	NT LAW			
$\frac{2^2}{2^5} =$		OR	$\frac{2^2}{2^5} =$	

By the transitive property... 2^{-3} =

Algebra: $x^{-n} = \frac{1}{x^n}$ where x can be any number but 0.

Example 1: Simplify.

a)	3 ⁻²	b) $(-3)^{-2}$	C) 0.3 ⁻⁴
,			,

Algebra:
$$\left(\frac{a}{b}\right)^{-n} = \left(\frac{b}{a}\right)^{+n}$$
 where a, b can be any number but 0.

Example 2: Simplify and evaluate.

a)
$$\left(\frac{5}{4}\right)^{-2}$$
 b) $\left(-\frac{3}{4}\right)^{-3}$ c) $\left(\frac{10}{3}\right)^{-3}$

OOPS! You don't learn this until next section!

Example 3: Evaluate without using a calculator. ** Remember $x^{\frac{m}{n}} = \sqrt[n]{x^m}$ **

a)
$$8^{-\frac{2}{3}}$$
 b) $\left(\frac{9}{16}\right)^{-\frac{3}{2}}$ c) $(-0.027)^{-\frac{2}{3}}$

- 1. Write the reciprocal of each number.
 - a. 4 c. $\frac{7}{8}$ b. -6 d. $-\frac{3}{5}$
- 2. Evaluate each power without using a calculator and answer as a fraction in lowest terms.
 - a. 9^2 and 9^{-2} d. $(-2)^4$ and $(-2)^{-4}$ b. 4^3 and 4^{-3} e. $(-5)^3$ and $(-5)^{-3}$ c. $(-1)^{12}$ and $(-1)^{-12}$ f. -7^2 and -7^{-2}
- 3. Write each power with a positive exponent.
 - a. 4^{-5} b. $(-8)^{-4}$ c. -9^{-3} d. $\left(\frac{1}{3}\right)^{-2}$ e. $\left(-\frac{4}{5}\right)^{-4}$ f. $-\left(\frac{5}{6}\right)^{-7}$

4. Evaluate each power without using a calculator and answer as a fraction in lowest terms.

- a. 4^{-2} e. $\left(-\frac{5}{6}\right)^{-2}$

 b. $(-3)^{-4}$ f. $-\left(\frac{3}{2}\right)^{-4}$

 c. -5^{-3} g. $\left(-\frac{3}{5}\right)^{-3}$

 d. $\left(\frac{1}{2}\right)^{-3}$ g. $\left(-\frac{3}{5}\right)^{-3}$

 h. $-\left(-\frac{4}{3}\right)^{-2}$
- 5. Write each number as a power with a negative integer exponent.
 - a. $\frac{1}{2}$ d. $\frac{1}{9}$
 - b. 3 e. -4
 - с. -5

1.4 Rational Exponents

A. Use a calculator to complete the tables.

	x	$x^{\frac{1}{2}}$		x	1
	1			1	<u>x</u> 3
	4			ו פ	
	9		·	27	
	16			64	
Notice	e the p	attern:			
	\sqrt{x} the	e	 as a p	ower is j	
	3/	-			

$\sqrt[3]{x}$	the	as a power is
$\sqrt[5]{x}$	the	as a power is

IN GENERAL $x^{\frac{1}{n}}$ as a radical becomes $\sqrt[n]{x}$. And vice versa, $\sqrt[n]{x}$ equals $x^{\frac{1}{n}}$.

Example 1: Write as a radical and then evaluate.

a)	$1000^{\frac{1}{3}}$	b) $0.25^{\frac{1}{2}}$	c)	$\left(\frac{16}{81}\right)$	$\frac{1}{4}$
				(01)	

$$\begin{array}{ccc} \frac{m}{n} & \longleftarrow & \underline{Exponent of the root or radicand} & \frac{m}{n} \\ x & \longleftarrow & \underline{Index of the root (little \#)} & \text{so} & x & \overset{m}{n} = \sqrt[n]{x^m} \text{ or } \left(\sqrt[n]{x}\right)^n \end{array}$$

Example 2: Write $26^{\frac{2}{5}}$ in radical form <u>two</u> ways. a) b) **Example 3:** Write as an exponent.

a) $\sqrt{3^5}$

b)
$$(\sqrt[3]{25})^2$$

Example 4: Write as a radical and then evaluate.

a)
$$8^{\frac{2}{3}}$$
 b) $(-27)^{\frac{4}{3}}$ c) $(-32)^{0.4}$

Example 5: Evaluate without using a calculator. ** Remember $x^{\frac{m}{n}} = \sqrt[n]{x^m}$ **

a)
$$8^{-\frac{2}{3}}$$
 b) $\left(\frac{9}{16}\right)^{-\frac{3}{2}}$ c) $(-0.027)^{-\frac{2}{3}}$

1.4 WS

- 1. Write each power with a positive rational exponent.
 - a. $48^{-\frac{1}{2}}$ b. $\left(\frac{30}{49}\right)^{-\frac{1}{4}}$ c. $\left(\frac{1}{18}\right)^{-\frac{1}{3}}$ d. $(56)^{-0.25}$ f. $-\left(\frac{3}{10}\right)^{-\frac{1}{2}}$ g. $(4.5)^{-\frac{1}{3}}$ h. $\left(-\frac{8}{16}\right)^{-0.2}$
- 2. Evaluate each power without using a calculator and answer as a fraction in lowest terms.

a.
$$36^{-\frac{1}{2}}$$

b. $1000^{-\frac{1}{3}}$
c. $-16^{-\frac{1}{4}}$
d. $(-27)^{-\frac{1}{3}}$

- 3. Evaluate each power without using a calculator and answer as a fraction in lowest terms.
 - a. $25^{-0.5}$ c. $(10000)^{-0.25}$ e. $0.25^{-0.5}$ b. $(-32)^{-0.2}$ d. $-81^{-0.5}$ f. $0.0081^{-0.25}$
- 4. Write each power in the form $\sqrt[n]{\left(\frac{b}{a}\right)^m}$, then evaluate each power without using a calculator and answer as a fraction in lowest terms.
 - a. $8^{-\frac{2}{3}}$ b. $\left(\frac{1}{100}\right)^{-\frac{3}{2}}$ c. $-\left(\frac{4}{32}\right)^{-\frac{2}{3}}$ d. $(-0.008)^{-\frac{2}{3}}$
- 5. Write each power in the form $\sqrt[n]{\left(\frac{b}{a}\right)^m}$, then evaluate each power without using a calculator and answer as a fraction in lowest terms.
 - a. $16^{-\frac{5}{4}}$ c. $\left(-\frac{27}{125}\right)^{-\frac{4}{3}}$ e. $\left(\frac{81}{16}\right)^{-0.75}$ g. $\left(\frac{20}{45}\right)^{-2.5}$ b. $\left(\frac{27}{8}\right)^{-\frac{2}{3}}$ d. $-0.01^{-2.5}$ f. $-32^{-1.2}$ h. $\left(-\frac{5}{40}\right)^{-\frac{7}{3}}$
- 6. Write each number as a power with exponent $\frac{1}{2}$, then as a power with exponent $-\frac{1}{2}$.
 - a. $\frac{1}{2}$ c. $\frac{1}{5}$ e. $\frac{4}{9}$

 b. 3
 d. $\frac{2}{5}$ f. $-\frac{7}{10}$
- 7. Determine whether the sign of the exponent x is positive, negative, or zero. Justify your answer. $3^x < 1$

1.5 Exponent Laws/Rules

Multiplication Rule	$a^x \cdot a^y = a^{x+y}$
Division Rule	$a^x \div a^y = a^{x-y}$
Power of a Power Rule	$\left(a^{x}\right)^{y}=a^{xy}$
Power of a Product Rule	$(ab)^x = a^x b^x$
Power of a Fraction Rule	$\left(\frac{a}{b}\right)^x = \frac{a^x}{b^x}$
Zero Exponent	$a^0 = 1$

Example 1: Simplify:

a)
$$2^3 \cdot 2^5$$
 b) $(x^3 y^2)(x^2 y^4)$ c) $\frac{(1.4^3)(1.4^4)}{1.4^2}$

d)
$$\frac{10a^5b^3}{2a^2b^2}$$
 e) $\frac{6x^4y^3z}{14xy^2}$

To SIMPLIFY
$$(ab)^m$$
 or $\left(\frac{a}{b}\right)^m$
. That is $(ab)^m = a^m b^m$ and $\left(\frac{a}{b}\right)^m = \frac{a^m}{b^m}$
Remember to follow BEDMAS

Example 2: Simplify.

a)
$$(2a^5b^3)^4$$
 b) $\left(\frac{y^4}{x^2}\right)^5$ c) $\left(\frac{3x^3y}{4}\right)^3$

d)
$$\left(\frac{100r^5}{25r^2b^3}\right)^2$$
 e) $\left(\frac{78^{-12}}{2y^2z^3}\right)^0$

1.5 WS

- 1. Write each expression as a single power with positive exponents.
 - a) $2^4 \cdot 2^3$ b) $0.25^{-2} \cdot 0.25^4$ c) $5^4 \div 5^6$ d) $0.5^3 \div 0.5^{-3}$ f) $2.5^3 \div 2.5^4$
- 2. Simplify each expression.
 - a) $(x^5)^2$ c) $(x^{-3})^5$
 - b) $5(x^4)^{-2}$ d) $(x^{-4})^{-5}$
 - e)
- 3. Simplify each expression.
 - a) $(2ab)^3(a^2b)^2$ b) $3(a^{-5}b^{-4})^2(a^2b^3)^4$ c) $\frac{2(ab^2)^{-2}}{(a^3b)^2}$

C)
$$\frac{-6(a^3b^2)^{-1}}{(a^2b^5)^{-3}}$$

4. Simplify each expression.

$$\begin{aligned} \mathsf{Q} &) \quad \frac{4a^{-\frac{4}{5}b^3}}{a^{-2}b^{\frac{3}{2}}} \\ \mathsf{b} &) \quad \frac{4a^{-2}b^{\frac{3}{2}}}{a^{-4}b^{\frac{1}{2}}} \end{aligned} \qquad \begin{aligned} \mathsf{C} &) \quad \left(\frac{a^{\frac{3}{4}b^{-2}}}{a^{-1}b^{\frac{5}{2}}}\right)^2 \\ \mathsf{d} &) \quad \left(4a^{-\frac{4}{5}b^{\frac{1}{10}}}\right)^{\frac{5}{2}} \left(a^{\frac{1}{3}}b^{\frac{1}{4}}\right)^3 \end{aligned}$$

- 5. A strain of bacteria doubles every 20 minutes. The number of bacteria at any time in the past, *I*, can be approximated using the formula $I = A(2)^{-\frac{n}{20}}$, where *A* is the current number of bacteria, and *n* is the time, in minutes that has passed. If there are currently 1 billion bacteria in a colony, approximately how many bacteria were there 8 hours ago (to the nearest whole number).
- 6. Evaluate the expression for a = -1 and b = -3. Write the answer as an integer or a fraction.

$$\left(\frac{a^{-3}b}{ab^{-1}}\right)^{-2} \cdot \left(\frac{ab^2}{a^2b^{-1}}\right)^2$$

7. Simplify each expression.

a)
$$\left(\frac{18x^3y^{\frac{1}{4}}}{8xy^{-\frac{7}{4}}}\right)^{-\frac{1}{3}}$$
 b) $\left(\frac{6x^{\frac{3}{4}y^{-2}}}{4x^{-\frac{1}{4}y^{-3}}}\right)^{-1} \cdot \left(\frac{2x^3y}{3xy^{\frac{1}{2}}}\right)^{-\frac{1}{3}}$

	Review Unit 1					
Multiple Choice: Identify the choice that best completes the statement or answers the question.						
1.	Without evaluating the	radical, between v	which two integers is the value of $\sqrt{90}$?			
a. 8 and 9	b. 7 and 8	c. 10 and 11	d. 9 and 10			
2.	Estimate the value of $^{3\!$	⁴³ to 1 decimal pla	ace.			
a. 3.7	b. 3.8	c. 3.2	d. 3.5			
3.	Which value is the close	est estimate to $\sqrt[4]{32}$	Ś			
a. 2.4	b. 2.6	c. 2.1	d. 2.7			
4.	Write $\frac{4}{9}$ as a square room	t.				
a. ₃√ <u>64</u> √729	b. $\sqrt{\frac{16}{18}}$	C. $\sqrt{\frac{8}{81}}$	d. $\sqrt{\frac{16}{81}}$			
5.	Evaluate $\sqrt[3]{\frac{32}{500}}$. Write th	e answer as a frac	tion in lowest terms.			
a. <u>6</u> 1	b. $\frac{5}{2}$	C. $\frac{2}{5}$	d. $\frac{2}{6}$			
6.	Which radicals are equ	al to $\frac{1}{4}$?				
I. $\sqrt{\frac{1}{16}}$	$. \qquad \sqrt{\frac{4}{64}} \qquad . \qquad \sqrt[3]{\frac{1}{64}}$	IV. $\sqrt[3]{\frac{1}{16}}$				
a. Only II a b. Only I, II,	nd III and III	c. Only I and IV d. Only I and III				
I. All na II. All pa III. All ter IV. All rat	Which statements are to stural numbers and whole sitive numbers and nego minating decimals and o tional numbers and irratio	rue? e numbers are inte ative numbers are i non-terminating de onal numbers are r	gers. integers. ecimals are rational numbers. eal numbers.			
a. Only sta	tements I. II. and III	c. Only statemer	nts II and III			

- a. Only statements I, II, and IIIc. Only statements II and IIIb. Only statements I and IVd. Only statements I, III, and IV

8. (I. Positive	Classify the number $\sqrt{\frac{1}{4}}$ e integer II. Rational r	<u>.</u> number III. Irratio	onal number IV. Real number
a. I, II, and I	V b. III and IV	c. II and IV	d. I and II
9.	Which set of numbers c	ontains all irrationc	al numbers?
α. _{π, ³√4, −0.} b. −0.111111	$\overline{6}$, $\sqrt{11}$, $\sqrt{\frac{2}{9}}$	C. -2 , $\sqrt{0.04}$, 1.9797 d. $\sqrt{2}$, $-\sqrt[3]{121}$, -3.3	797 316625
10.	Write $\sqrt[3]{80}$ as a mixed ro	dical.	
a. 8∛√10	b. 4 ³ √5	C. 2 ³ √10	d. 10 ³ √2
11	Write $\sqrt[4]{162}$ as a mixed r	adical.	
a. 2¼√3	b. 3⁴√2	c. 3√2	d. ⁴√567
12.	Write $10\sqrt{3}$ as an entire	radical.	
a. √30	b. √90	C. √300	d. √900
13	Write $3\sqrt[3]{11}$ as an entire	radical.	
a. ∛297	b. ∛√3993	c. ∛99	d. ³ √1089
14. 🗧	Simplify: $3^{\frac{1}{2}} \cdot 3^{\frac{1}{2}}$		
a. 1/4	b. 3	c. 1	d. $\sqrt{3}$
15.	Which expression is equ	ivalent to $\left(\frac{9}{25}\right)^{\frac{3}{2}}$?	
$a. \sqrt{\left(\frac{3}{5}\right)^3}$	b. $\sqrt{\left(\frac{9}{25}\right)^3}$	C. $\sqrt{\left(\frac{9}{25}\right)^2}$	d. $\left(\frac{3}{5}\right)^{15}$
16.	Which power is equival	ent to $\left(\sqrt[7]{-125}\right)^4$?	
a. $\frac{4}{-125^{\frac{4}{7}}}$	b. $(-125)^{\frac{7}{4}}$	C. (-125) ⁴ / ₇	d. $-125^{\frac{7}{4}}$

-

17.	Evaluate $\left(\frac{125}{64}\right)^{\frac{1}{3}}$ witho	out using a calculat	for.
a. <u>5</u> 16	b. <u>5</u>	C. <u>4</u> 5	d <u>25</u>
18.	Write $3\sqrt[3]{2}$ as a power	with a rational exp	onent.
a. ³ / ₁₈	b. $\frac{1}{18^3}$	C. ³ / ₃	d. ¹ / ₅₄
19.	Evaluate -3206 without	using a calculator	
a8	b16	c. 16	d. 8
20.	Write ³⁴³ / ₆₄ as a power v	vith a negative exp	oonent.
$\mathbf{a.} \left(\frac{4}{7}\right)^{-2}$	b. $\left(\frac{4}{7}\right)^{-3}$	C. $\left(\frac{7}{4}\right)^{-2}$	d. $\left(\frac{7}{4}\right)^{-3}$
21.	Evaluate -100-25 withou	ut using a calculate	or.
a. <u>1</u> 10 000	b. $-\frac{1}{100\ 000}$	C. $\frac{1}{100000}$	d <u>1</u>
	$(1000)^{-\frac{2}{3}}$		
22.	Evaluate $\left[\frac{-27}{27}\right]$ with	hout using a calcu	llator.
22. a <u>9</u> 100	Evaluate $\begin{bmatrix} -27 \\ 27 \end{bmatrix}$ with b. $\frac{9}{100}$	hout using a calcu c <u>10</u> 3	ulator. d. <u>3</u> 100
22. a <u>9</u> 23.	Evaluate $\left[-\frac{27}{27} \right]$ with b. $\frac{9}{100}$ Simplify $4x^{-6} \cdot 2x^{3}$. Write	thout using a calcuct c. $-\frac{10}{3}$ the expression with	alator. d. $\frac{3}{100}$ n positive exponents.
$\begin{array}{c} \underline{} 22. \\ a. \ \underline{} \frac{9}{100} \\ \underline{} 23. \\ a. \ \underline{} \frac{x^3}{64} \end{array}$	Evaluate $\left[-\frac{27}{27} \right]$ with b. $\frac{9}{100}$ Simplify $4x^{-6} \cdot 2x^{3}$. Write b. $\frac{8}{x^{3}}$	thout using a calcu c. $-\frac{10}{3}$ the expression with c. $\frac{64}{x^3}$	d. $\frac{3}{100}$ n positive exponents. d. $-\frac{x^3}{8}$
$\begin{array}{c} & 22. \\ a. & -\frac{9}{100} \\ & 23. \\ a. & \frac{x^3}{64} \\ & 24. \end{array}$	Evaluate $\left[-\frac{27}{27} \right]$ with b. $\frac{9}{100}$ Simplify $4x^{-6} \cdot 2x^3$. Write b. $\frac{8}{x^3}$ Simplify $\frac{4x^3}{5x^{-5}}$. Write the	thout using a calculation c. $-\frac{10}{3}$ the expression with c. $\frac{64}{x^3}$	blator. d. $\frac{3}{100}$ in positive exponents. d. $-\frac{x^3}{8}$ positive exponents.

Unit 1 Review: Answer Section

1.	ANS:	D	15.	ANS:	В
2.	ANS:	D	16.	ANS:	С
3.	ANS:	А	17.	ANS:	В
4.	ANS:	D	18.	ANS:	D
5.	ANS:	С	19.	ANS:	А
6.	ANS:	В	20.	ANS:	В
7.	ANS:	В	21.	ANS:	В
8.	ANS:	А	22.	ANS:	В
9.	ANS:	D	23.	ANS:	В
10.	ANS:	С	24.	ANS:	В
11.	ANS:	В	25.	ANS:	С
12.	ANS:	С	26.	ANS:	D
13.	ANS:	А	27.	ANS:	С
14.	ANS:	В	28.	ANS:	С