4.1 Slope of a Line

The SLOPE of a line describes how \qquad

Slope $=$

Increasing from left to right

So steep you're vertical!

Decreasing from left to right

The slope can also be defined as the $\frac{r i s e}{r u n}$ to go from one point to another on the line.

Ex.1: Use the points given to determine the slope of each line.
a)

c)

b)

d)

e) What is the slope of a vertical line?

Sometimes you are only given the coordinates of points on a line and asked to determine the slope.
Slope formulas:

Ex.2: Find the slope of the lines that pass through the following points.
a) $(-5,4)$ and $(3,-1)$
b) $(4,5)$ and $(4,-4)$

Ex.3: The slope of a line segment is $\frac{1}{2}$ and passes through the points $(k, 6)$ and $(-1,2)$.
Find the value of k .

Practical applications of slope:

4.2 Slopes of Parallel and Perpendicular Lines

Ex.1: Graph the line segment $A B$ with endpoints $A(-2,8)$ and $B(-6,-4)$. Graph the line segment CD with endpoints $C(5,4)$ and $D(2,-5)$. Find the slopes of both lines. What conclusion can you make about the two lines?

Parallel Lines

Parallel lines are lines that never cross.
Lines \& line segments are parallel if they have the \qquad

Ex. 2: Determine whether the quadrilateral (4-sided figure) with vertices A $(0,-6), \mathrm{B}$ $(2,-1), C(-1,5)$ and $D(-3,0)$ is a parallelogram. \qquad

Ex. 3: Graph A $(-3,5)$, $B(5,3)$ and $C(0,0)$. Find the slope of segment CA and CB. What conclusion can you make about the two lines?

Perpendicular Lines

\perp Perpendicular lines \& line segments meet (or will meet) at \qquad angles.
\perp The slopes of perpendicular lines \& line segments will have a product of \qquad .
\perp The slopes of perpendicular lines are also referred to as \qquad
\qquad ; that is, a line with slope $a, a \neq 0$, is perpendicular to a line with slope:

Ex. 4: State the slope that would be perpendicular to the slopes given
$\mathrm{m}=\frac{2}{3} \perp$

$$
\mathrm{m}=\frac{-1}{7} \perp
$$

$$
\mathrm{m}=1 \perp
$$

$$
\mathrm{m}=0 \perp
$$

Ex. 5: A line segment has endpoints $E(2,3)$ and F $(-4,-1)$. Determine the coordinates of a point G so that the line $E G$ is perpendicular to line EF.

HW p 349 \#5,6,8,9,12,17

4.3 Slope-Intercept Form of the Equation for a Linear Function

Slope-Intercept Form of the Equation of a Linear Function

The equation of a linear function can be written in the form \qquad where $m=$ \qquad
and $b=$ \qquad

Ex. 1: Graph the linear function with the equation: $y=\frac{1}{2} x+3$
Steps:
i) Determine slope, $m=$
ii) Determine y-intercept, $b=$
iii) Plot known point (b)
iv) From this known point, use the slope to plot the other points on the line. $m=$
v) Draw a line through the points.

Ex. 2: Write an equation to describe this function. Verify the equation.

Ex. 3: Graph the lines represented by each equation.
State the slope and y-intercept of each.
a) $y=\frac{1}{3} x-4$
b) $y=-2 x$
c) $y=7$
d) $x=-6$

Ex. 4: The equation of a line is $y=3 x+b$. Determine " b " when the line passes through the point $C(-1,1)$

Ex. 5: The equation of a line is $y=m x+2$. Determine the slope (m) when the line passes through the point $\mathrm{A}(-5,1)$

Name: \qquad
Block: \qquad
4.1-4.3 WS

Find the slope of each line.
1)

Find the slope of the line through each pair of points.
2) $(-19,8),(-16,8)$
3) $(5,-15),(-7,1)$

Find the slope of a line perpendicular to each given line.
4) $y=-\frac{3}{4} x+2$

Find the value of \mathbf{x} or y so that the line through the points has the given slope.
5) $(x, 7)$ and $(-3,-4)$; slope: $\frac{11}{7}$
6) $(0, y)$ and $(2,-9)$; slope: -3
\qquad
7) The coordinates of the vertices of a triangle are $(20,10),(-35,20)$ and $(5,-10)$. Find the slopes of each segment pairs to determine if it is a right triangle?
8) Draw the graphs of the linear functions with the following equations:
a) $y=\frac{2}{5} x+3$
b) $y=-2$

Write the slope-intercept form of the equation of each line.

9)

Write the slope-intercept form of the equation of the line described.
10) through: $(4,2)$, parallel to $y=-\frac{1}{3} x-5$

4.4 Slope-Point Form of the Equation for a Linear Function

Construct your Understanding: Determine an equation for this line.

Develop a formula for the slope-point form for the equation of a line.
Consider a line that has slope m and passes through the point $\mathrm{P}\left(x_{1}, y_{2}\right)$. Another point on the line is $\mathrm{Q}(x, y)$

$$
m=\frac{\text { rise }}{\text { run }}
$$

Slope-Point Form of the Equation of a Linear Function

The equation of a line that passes through $\mathrm{P}\left(x_{1}, y_{1}\right)$ and has slope m is:

Ex. 1: Describe the graph of the linear function with this equation and then graph it: $y-2=\frac{1}{3}(x+4)$

Compare the given equation with the equation in slope-point form.

$$
y-y_{1}=m\left(x-x_{1}\right) \longrightarrow \text { To match the slope-point form, }
$$ rewrite the given equation so the operations are subtraction.

Ex. 2: Writing an Equation Using a Point and Slope
a) Write an equation in slope-point form for this line.
b) Write the equation in part a) in
 slope-intercept form.
What is the y-intercept of this line?

Name: \qquad Block : \qquad

Checkpoint Unit 4

1. Plot the segments $\mathrm{AB}, \mathrm{CD}, \mathrm{EF}$ on the grid then find the slope of the following segments. $A(-6,5) \quad B(3,-4) \quad C(0,2) \quad D(-3,-4) \quad E(8,-5) \quad F(8,7)$
a) AB (use $\frac{\text { rise }}{\text { run }}$ on the graph)
$A B=$ \qquad
b) CD (use the coordinate slope formula)
$C D=$ \qquad
c) EF

$$
\mathrm{EF}=
$$

2. Given $\Delta \mathrm{ABC}$ with vertices $\mathrm{A}(1,1) \mathrm{B}(10,-2) \mathrm{C}(7,4)$ determine is the triangle is a right triangle.

$A B=$

AC=
$B C=$

Explain your answer: \qquad
\qquad
3. On the grid provided plot each pair of points, draw each segment, and calculate the slope of each segment.

a) $A(-1,3)$ and $B(5,7)$ slope $=$ \qquad
b) $C(4,-3)$ and $D(-1,5)$ slope $=$ \qquad
c) $E(2,-3)$ and $F(-1,-5)$ slope $=$ \qquad
d) $G(4,2)$ and $H(-4,-3)$ slope $=$ \qquad

Which pairs of segments are:

Parallel	Perpendicular
Explain:	Explain:

4. Write the equation of a line in slope intercept form.
a) slope $=-3$, y-intercept $=4$
b) slope $=\frac{2}{7}, y$-intercept $=\frac{-1}{7}$
5. The equation of a line is $y=m x+2$ Determine the value of m when the line passes through the point $(-5,1)$.
6. Write an equation in slope-point form with the slope through the point given.

$$
\text { Slope }=\frac{-2}{3} \text { Point }(2,6)
$$

7. Write an equation in slope-point form through the given points.
$(-3,5) ;(6,-4)$
8. Determine the equation of a line in slope-point form with a y-intercept of -2 that is perpendicular to the line passing through $(-1,3)$ and $(5,1)$.
9. Graph the lines on the grids. PLOT THREE POINTS MINIMUM.
a) through point $(3,-2)$; slope $=\frac{3}{5}$
b) $y=-3 x+5$

c) y-intercept $=2$; slope $=\frac{-2}{3}$

e) $y+6=\frac{3}{2}(x-5)$

d) $y=\frac{2}{5} x$

e) $y-2=3(x-1)$

4.5 General Form of the Equation for a Linear Function

> General Form of the Equation of a Linear Relation $$
\boldsymbol{A x}+\boldsymbol{B} \boldsymbol{y}+\boldsymbol{C}=\mathbf{0}
$$ is the general form of the equation of a line, where A is a whole number, and B and C are integers.

Ex. 1: Write each equation in general form.
a) $y=-\frac{2}{3} x+4$
b) $y-1=\frac{3}{5}(x+2)$

Foundations and Precalculus 10

Ex. 2: Graph the line whose equation is $3 x+2 y-18=0$ by finding the x - and y-intercepts of the line.

Determine the x-intercept:

Determine the y-intercept:

Ex.3: Determine the slope of a line with the equation: $3 x-2 y-16=0$

Name : \qquad Block: \qquad

Unit 4 - Linear Functions Review

1. Determine the slope of a line passing through the following points and tell whether the slope is positive, negative, zero or undefined.
a. $P(3,-2)$ and $Q(-1,6)$
b. $R(2,4)$ and $S(2,-1)$
2. Given the graph write the equation of the line in:
a) Slope point form
b) Slope intercept form

3. Given the graph write the equation of the line in:
a) Slope point form
b) Slope intercept form

4. Write an equation for the line that passes through $\mathrm{A}(4,3)$ and is parallel to the line $y=\frac{1}{2} x+2$.
a) Slope point form
b) Slope intercept form
5. Write an equation for the line that passes through $\mathrm{A}(-4,1)$ and is perpendicular to the line $y=\frac{2}{3} x+6$
a) Slope point form
b) Slope intercept form
6. Graph the lines.

7. Two perpendicular lines intersect on the y-axis. One line has equation: $y-4=\frac{2}{3}(x+6)$. What is the equation of the other line in Slope-Point Form?

General Form: $A x+B y+C=0$
7. Write: $y=\frac{-2}{5} x+2$ in General Form.
8. Write: $y-5=\frac{2}{5}(x-7)$ in General Form.
9. Determine the x -intercept and the y -intercept of the line whose equation is: $6 x-4 y-3=0$
x-intercept: \qquad y-intercept: \qquad
10. Determine the slope of a line with equation: $2 x-4 y+10=0$

Name: \qquad Block: \qquad

Unit 4 Extra Review

Multiple Choice

Identify the choice that best completes the statement or answers the question.

ANSWER

_1. Determine the slope of the line that passes through $\mathrm{G}(3,-3)$ and $\mathrm{H}(-5,9)$.
a. $\frac{3}{2}$
b. $-\frac{2}{3}$
c. $\frac{2}{3}$
d. $-\frac{3}{2}$
\qquad 2. Determine the steepness of this roof by calculating its slope.

a. $-\frac{5}{3}$
b. $\frac{5}{3}$
c. $\frac{3}{5}$
d. $-\frac{3}{5}$
3. A road rises 9 m for every 60 m measured horizontally. Determine the slope of the road.
a. $-\frac{20}{3}$
b. $-\frac{3}{20}$
c. $\frac{20}{3}$
d. $\frac{3}{20}$
4. A line has x-intercept 2 and y-intercept 6 ? Determine the slope of the line.
a. $\frac{1}{3}$
b. 3
c. -3
d. $-\frac{1}{3}$
5. Determine the slope of the line that is perpendicular to this line segment.

a. 3
c. $\frac{1}{3}$
2. 2
‥ $-\frac{1}{3}$
6. Determine the slope of a line that is perpendicular to the line through $W(-9,7)$ and $X(6,-10)$.
a. $-\frac{15}{17}$
b. $-\frac{17}{15}$
c. -15
d. $\frac{15}{17}$
\qquad 7. A line has x-intercept -5 and y-intercept 1 . Determine the slope of a line parallel to this line.
a. -5
b. $-\frac{1}{5}$
c. 5
d. $\frac{1}{5}$
8. A line passes through $\mathrm{D}(-5,3)$ and $\mathrm{N}(12,-4)$. Determine the coordinates of two points on a line parallel to DN.
a. $(6,-10)$ and $(24,-8)$
b. $(-10,24)$ and $(6,-8)$
c. $(-10,6)$ and $(24,-8)$
d. $(-10,6)$ and $(-8,24)$
9. Predict what will be common about the graphs of these equations.
i) $y=3 x+6$
iii) $y=3 x-6$
ii) $y=3 x-5$
iv) $y=3 x+5$
a. All the graphs will have the same slope.
c. All the graphs will have the same y-intercept.
b. All the graphs will have the same
d. None of the above. x-intercept.
10. Write an equation for the graph of a linear function that has slope $-\frac{1}{3}$ and y-intercept -3 .
a. $y=-3 x-\frac{1}{3}$
b. $y=-\frac{1}{3} x-3$
c. $y=\frac{1}{3} x+3$
d. $y=3 x-\frac{1}{3}$
11. To join a tennis club, Josephine pays a start-up fee of $\$ 130$, plus a monthly fee of $\$ 24$. Write an equation to represent the total cost, C dollars, for t months of membership.
a. $t=24 C+130$
b. $C=24 t+130$
c. $C=24 t-130$
d. $C=130 t+24$
12. Write an equation to describe this graph.

a. $f(x)=-\frac{1}{2} x+9$
b. $f(x)=\frac{1}{2} x-9$
c. $f(x)=-\frac{1}{2} x-9$
d. $f(x)=\frac{1}{2} x+9$
13. Which equations represent perpendicular lines?
a. $y=6 x-7, y=6 x+7$
b. $y=-7 x+11, y=\frac{1}{7} x+6$
c. $y=11 x-7, y=11 x+\frac{1}{7}$
d. $y=\frac{1}{6} x+6, y=6 x+6$
14. Describe the graph of the linear function with this equation: $y-7=-5(x+8)$
a. The graph is a line through $(8,-7)$ with slope -5 .
b. The graph is a line through $(-8,7)$ with slope -5 .
c. The graph is a line through $(-8,7)$ with slope 5 .
d. The graph is a line through $(8,-7)$ with slope 5 .
15. Write this equation in slope-intercept form: $y-3=-\frac{1}{5}(x+2)$
a. $y=-\frac{1}{5} x+\frac{13}{5}$
b. $y=-\frac{3}{5} x+\frac{13}{5}$
c. $y=-x+\frac{13}{5}$
d. $y=\frac{1}{5} x+\frac{13}{5}$
16. Determine the y-intercept of the graph of this equation: $y-3=4(x+5)$
a. 3
b. -23
c. 23
d. -20
17. Write an equation in slope-point form for the line that passes through $A(-2,4)$ and $B(-9,6)$.
a. $y-6=-\frac{2}{7}(x+2)$
b. $y+4=-\frac{2}{7}(x-2)$
c. $y-4=-\frac{2}{7}(x+2)$
d. $y+6=\frac{2}{7}(x-2)$
18. Write an equation for the line that passes through $\mathrm{T}(-3,3)$ and is parallel to the line $y=7 x-10$.
a. $y+3=-\frac{1}{7}(x-3)$
b. $y+3=7(x-3)$
c. $y-3=-\frac{1}{7}(x+3)$
d. $y-3=7(x+3)$
19. Write this equation in general form: $y=3 x+5$
a. $-3 x+y-5=0$
b. $3 x+y+5=0$
c. $3 x-y+5=0$
d. $3 x-y-5=0$
20. Write this equation in general form: $y+5=\frac{5}{3}(x-3)$
a. $5 x-3 y=-8$
b. $5 x-3 y-8=0$
c. $5 x-3 y-30=0$
d. $5 x+3 y-30=0$
21. Determine the slope of the line with this equation: $7 x+3 y+5=0$
a. $-\frac{7}{3}$
b. $\frac{3}{7}$
c. $\frac{7}{3}$
d. $-\frac{3}{7}$
22. Write this equation in slope-intercept form: $10 x+3 y-4=0$
a. $y=\frac{10}{3} x+\frac{4}{3}$
b. $y=-\frac{10}{3} x+\frac{4}{3}$
c. $y=\frac{10}{3} x-\frac{4}{3}$
d. $y=-\frac{10}{3} x-4$
23. Which equation is equivalent to $2 x-3 y-9=0$?
a. $y=\frac{2}{3} x+3$
b. $y+1=-\frac{2}{3}(x-6)$
c. $y+1=\frac{2}{3}(x-3)$
d. $y-7=\frac{2}{3}(x-6)$
24. A line has x-intercept -9 and y-intercept 3 . Determine the equation of the line in general form.
a. $3 x+9 y-27=0$
b. $3 x-9 y-27=0$
c. $3 x-9 y+27=0$
d. $3 x+9 y+27=0$

